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a b s t r a c t

Fodor and Pylyshyn [Fodor, J. A., & Pylyshyn, Z. W. (1988). Connectionism and cognitive
architecture: A critical analysis. Cognition, 28, 3–71] argue that connectionist models are
not able to display systematicity other than by implementing a classical symbol system.
This claim entails that connectionism cannot compete with the classical approach as an
alternative architectural framework for human cognition. We present a connectionist
model of sentence comprehension that does not implement a symbol system yet behaves
systematically. It consists in a recurrent neural network that maps sentences describing
situations in a microworld, onto representations of these situations. After being trained
on particular sentence–situation pairs, the model can comprehend new sentences, even
if these describe new situations. We argue that this systematicity arises robustly and in
a psychologically plausible manner because it depends on structure inherent in the world.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

Human language is systematic to a considerable degree,
which is to say that ‘‘the ability to produce/understand
some sentences is intrinsically connected to the ability to
produce/understand certain others” (Fodor & Pylyshyn,
1988, p. 37). For example, somebody who can understand
the sentences Charlie plays chess inside and Charlie plays
hide-and-seek outside, will also be able to understand Char-
lie plays chess outside and Charlie plays hide-and-seek inside.

Ever since Fodor and Pylyshyn (1988) argued that neu-
ral networks cannot display systematicity, except by
implementing a classical symbol system, this issue has
been fiercely debated. This debate is of considerable
importance to cognitive science, for if it is indeed true that
neural networks offer no explanation for the systematicity
observed in language and thought, some would argue that
connectionism has little (if any) value as a representational
theory.

In this paper, our first objective is to present a connec-
tionist model of sentence comprehension that does not
implement a symbol system. Second, we investigate the
model’s ability to behave systematically, and compare this
to different claims about systematicity in human sentence
comprehension. Third, we set out to show that the model
comes to display systematicity by capitalizing on structure
present in the world, in language, and in the mapping from
language to events in the world. Our connectionist expla-
nation of systematic language comprehension takes into
account that the structure of the world is reflected in the
training input to which neural networks adapt. During
training, external structures become internalized and,
therefore, systematicity does not need to be inherent to
the system. It is conceivable that this holds not only for
neural networks, but also for the human cognitive system.

1.1. Semantic systematicity

To investigate connectionist systematicity, we need an
operationalization that allows for the quantification of
the systematic abilities of connectionist models. Hadley
(1994a) operationalized systematicity by putting it in
terms of learning and generalization. A neural network
generalizes if it can successfully process inputs it was not
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trained on. That is, during training for the ability to process
particular inputs, it also acquires the ability to correctly
process others. This shows the two abilities to be ‘‘intrinsi-
cally connected”, as desired by Fodor and Pylyshyn (1988,
p. 37). Therefore, a network is systematic to some extent
when generalization occurs, and displays higher levels of
systematicity if it generalizes to new items that differ more
strongly from the training examples. Since neural net-
works often do show at least some generalization without
instantiating a classical system, the issue is not whether
connectionist systematicity is possible at all, but whether
neural networks can be as systematic as people are. We re-
turn to this issue in Section 6.3 of the Discussion.

Hadley (1994a, 1994b) argued that, for neural networks
to truly model human language performance, they should
display semantic systematicity: the ability to construct cor-
rect representations of the meaning of novel sentences.
There have been only a few attempts to demonstrate con-
nectionist semantic systematicity, and none of these were
very convincing. Two related models by Hadley and Hay-
ward (1997) and Hadley and Cardei (1999) take as input
sentences from a simple language and give as output a net-
work representing their propositional structure. These
models are quite different from most connectionist sys-
tems in that they were explicitly provided with structured
representations. As argued by Aizawa (1997a), this results
in a system that is actually classicist rather than connec-
tionist. Likewise, Hadley, Rotaru-Varga, Arnold, and Cardei
(2001) point out that the two models use classical,
‘‘combinatorially pre-disposed” (p. 74) representations.
Consequently, these models do not instantiate true counte-
rexamples to Fodor and Pylyshyn’s (1988) claim.

A similar criticism applies to the sentence comprehen-
sion model by Miikkulainen (1996). Its systematic capabil-
ities result from three ‘control units’ that are trained to
control the network’s behavior at particular points in the
input sentence. This means that the training input did
not only consist of input-target (i.e., sentence-meaning)
pairs, but also included procedural instructions on how to
parse the sentences. As Miikkulainen admits, this is not
realistic. More seriously, the control units serve as connec-
tionist implementations of symbolic rules,1 basing the
model’s systematicity on symbolic, not connectionist,
computation.

Bodén and Niklasson (2000) trained a set of three
Recursive Auto-Associative Memories (RAAM; Pollack,
1990) to encode a very small number of propositions, such
as is-a(ernie, bird), is-a(bo, fish), can(ernie, fly), and can(bo, not-
fly). Next, one of the networks was trained to encode the
fact that the new entity jack can fly. As it turned out, the
internal representation of the token jack ended up closer
to that of ernie than to bo. Bodén and Niklasson claim that

this constitutes the inference that is-a(jack, bird), demon-
strating connectionist semantic systematicity. Hadley
(2004), however, argues strongly against this. According
to him, complexities of the training procedure render the
single test item not truly novel. Moreover, he argues that
the network’s representations lack semantic content be-
cause there is no possibility to associate a statement’s rep-
resentation to some state of affairs in the world that would
make the statement true. As we explain next, this problem
does not occur in our model because its representations of
statements also represent the described state of affairs in
the world.

1.2. Sentence comprehension and mental representation

Our model differs from those discussed above in that it
is rooted in recent psycholinguistic theories (e.g., Zwaan,
2004) according to which understanding a sentence does
not (just) consist in the construction of its propositional
(predicate-argument) structure, as has traditionally been
assumed (e.g., Kintsch & van Dijk, 1978). Instead, a state-
ment is only fully understood if the reader or listener has
constructed a mental representation (or ‘simulation’) of
the situation the sentence describes. This idea is compara-
ble to Johnson-Laird’s (1983) theory that mentally repre-
senting the meaning of a proposition comes down to
representing one or more concrete situations (which he
called ‘mental models’) that are consistent with that
proposition.

This view of understanding as mental simulation has
gained considerable experimental support. For example,
Stanfield and Zwaan (2001) provide evidence that readers
mentally represent objects’ orientations when these are
implied by (but not stated in) a sentence. They had sub-
jects read sentences like John put the pencil in the cup, after
which the subjects responded faster to an image of a pencil
in vertical orientation than of a pencil in horizontal orien-
tation. This outcome was reversed after reading John put
the pencil in the drawer. That is, responses are faster if the
orientation of the object in the presented image is congru-
ent with the orientation implied by the sentence. Such a
result is precisely what one would expect if readers men-
tally simulate the described situation, but difficult to ex-
plain by a purely propositional representation of the
sentence. Likewise, research by Zwaan, Stanfield, and Yax-
ley (2002) indicates that the shape of a mentioned object
forms part of the mental representation after sentence
comprehension, even if this shape is neither explicitly
mentioned nor relevant to the experimental task. The view
of sentence comprehension as mental simulation was con-
firmed in several other experiments (for an overview, see
Kerkhofs & Haselager, 2006).

Such findings suggest that the mental representation
resulting from language comprehension strongly depends
on the reader’s experience with, and knowledge of, the
world. For our current objectives, an important property
of such representations is that they lead to direct infer-
ence: To mentally simulate a (normal size) pencil in a (nor-
mal size) cup is also to represent the pencil being (more or
less) upright because, in our experience, pencils only fit in
cups in an upright position. More in general, if (according

1 For example, the ‘push’ control unit learns to activate a special memory
network whenever the current input is a relative pronoun. This implements
the rule ‘if the input is a relative pronoun, then push the current sentence
representation on the stack memory’. Miikkulainen (1996) claims that his
model does not implement a symbol system because the memory network
shows graceful degradation as its load increases, which is not how a symbol
system would behave. Although this might be true, it only goes to show
that the model’s memory does not (perfectly) implement a symbolic
memory. Its systematicity, however, is mainly due to the control units.
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to our knowledge) the world is such that some property or
event a implies that b, a representation of a has the prop-
erty of direct inference if it also represents b (see also
Haugeland, 1987). That is, relations between events in
the world are reflected in relations between the mental
representations of these events. A representation’s form
is thereby analogous to its meaning. Barsalou (1999) re-
ferred to representations that are analogical and modal
as ‘perceptual symbols’ but, following Peirce (1903/1985),
we will restrict our use of the word ‘symbol’ to refer to to-
kens with an arbitrary relation between form and meaning.
Symbolic representations do not allow for direct inference:
Getting from in(pencil, cup) to orientation(pencil, vertical) re-
quires an inference process that works on these represen-
tations, because nothing in the representations themselves
suggests how the represented situations might be related.

In spite of the evidence that understanding a sentence
involves more than the construction of a propositional
form, many computational models (e.g., Budiu & Anderson,
2004; Chang, 2002; Desai, 2007; Dominey, 2005; Hadley &
Cardei, 1999; Hadley & Hayward, 1997; Mayberry, Crocker,
& Knoeferle, in press; St.John & McClelland, 1990) repre-
sent sentence meaning as a structural combination of sym-
bols, corresponding to the proposition expressed by the
sentence. Contrary to this, Frank, Koppen, Noordman, and
Vonk (2003) developed a non-symbolic representational
scheme for the meaning of declarative sentences. In their
Distributed Situation Space (DSS) model of story compre-
hension, each event or situation in a world is represented
by a vector. As we explain in detail in Section 2.2, similar-
ities among these vectors mirror dependencies among the
represented events. If, in the world, the occurrence of some
event a implies that event b also occurs, the vector repre-
senting event a is such that it also represents b. Clearly, this
representation is analogical rather than symbolic (i.e., a
vector’s form and meaning are not separable) and provides
a basis for direct inference. DSS vectors capture the analog-
ical nature of Barsalou’s (1999) perceptual symbols, albeit
not their modality.

In the connectionist model of sentence comprehension
we present here, sentence meaning is represented by vec-
tors like those in the DSS model. The process of under-
standing a sentence that describes a particular event in
the world, is simulated as the transformation of the sen-
tence into the vector representing that event. As will be-
come clear, these analogical representations are vital for
reaching surprisingly high levels of systematicity in this
model.

1.3. Overview

The models discussed in Section 1.1 were based on neu-
ral networks that are not exposed to anything like the
structure that is inherent in (part of) a realistic world. If,
as we argue, systematicity in thought is derivative from
systematicity in the world, access to a world that provides
sufficient structure is necessary to obtain semantic syste-
maticity. Therefore, the first step in our simulations was
to design an appropriate ‘microworld’. As described in de-
tail in Section 2.1, the microworld is populated by three
people, who can engage in several activities, be in different

places, etcetera, giving rise to a variety of events that can
(co-)occur in the microworld. Section 2.2 explains how
all these events are assigned analogical vector representa-
tions, encoding knowledge about the microworld.

These vectors serve as the targets for the sentence com-
prehension model: If the model receives as input a sen-
tence referring to a particular event, it should give as
output the vector representing that event. The input sen-
tences come from a ‘microlanguage’ that was designed
for describing microworld events. Section 3 presents the
lexicon and syntax of this language, as well as its seman-
tics, that is, the mapping from sentences to microworld
events. The transformation of microlanguage sentences
into the corresponding target vectors is performed by a
recurrent neural network, presented in Section 4.1, which
learns the microlanguage’s semantics from examples of
sentences-vector pairs.2

The network’s ability to behave systematically is inves-
tigated by withholding four specific groups of sentences
during its training phase, after which it is tested on some
of these sentences. Each of these groups allows us to test
for a particular level of systematicity, ranging from learn-
ing that synonyms can be interchanged, to understanding
a sentence with a novel combination of concepts. In Sec-
tion 4.2, we provide details of these test groups and explain
what the network needs to have learned to comprehend
new sentences of each group. The precise manner in which
systematicity was rated is defined in Section 4.3.

The results presented in Section 5 show that the model
indeed generalizes to new sentences, even when these sen-
tences describe events that are not observed during train-
ing. This, we argue, indicates that the network displays
relevant levels of semantic systematicity. In the same sec-
tion, we clarify how the network accomplished this and ex-
plain to what extent it depends on the use of analogical
representations that capture the microworld’s structure.

In the Discussion (Section 6) we evaluate the model in
relation to four common critiques of connectionist syste-
maticity: that such models implement a symbol system;
that connectionist demonstrations are not explanations;
that the degree of systematicity does not compare to that
of humans; and that the models do not scale up.

2. Representing a microworld

2.1. The microworld

Here, we describe the microworld that forms the basis
of subsequent simulations. It is structured in the sense that
there are (probabilistic) constraints on co-occurrences of
events. As will be shown in Section 2.2, this structure is
captured by the events’ representations that will be used
by the sentence comprehension model.

2.1.1. Concepts and events
In the microworld, there are two girls (called sophia and

heidi) and one boy (charlie). As shown in Table 1, they have

2 A preliminary model, dealing with a much smaller world and language,
was presented in Frank and Haselager (2006).
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access to three toys and four places. Also, there are three
games, which can be played and won in different manners.

By applying each of five predicates, 44 basic microworld
events can be constructed. These are listed in propositional
form in Table 2. It is important to bear in mind that these
propositional forms are only used for notational purposes.
Within the model itself, the representations of microworld
events do not contain anything like concepts, relations, or
variables. Instead, as will be explained in Section 2.2, each
of the 44 possible basic events is represented by one vector
whose components are not related to the concepts playing
a role in the event.

2.1.2. Co-occurrence constraints
Occurrences of microworld events are not mutually

independent. Some events are likely to co-occur, some
combinations are unlikely or even impossible, while other
pairs of events are related by implication. It is only these
co-occurrence relations that give any kind of ‘meaning’ to
the events. For instance, a justification for calling a partic-
ular event win(heidi) is that it never co-occurs with lose(hei-

di) while it must co-occur with playðheidi; gÞ (with g being
some game). Likewise, a justification for calling these other
two events lose(heidi) and playðheidi; gÞ lies in a similar set of
co-occurrence relations. Therefore, the presence of co-
occurrence constraints (i.e., structure) in the microworld
is crucial for infusing the events with meaning.

For clarity, we divide the constraints into four groups:
those concerning personal characteristics, games and toys,
being-at-a-place, and winning and losing.

2.1.2.1. Personal characteristics. Each of the three people in
our microworld has a ‘specialty’: a game that (s)he usually
and more easily wins. As can be seen from Table 3, a per-
son’s name and specialty sound conveniently alike. Also,

charlie, heidi, and sophia differ in preferred toy (the one most
often played with) and places most often visited. For exam-
ple, play(charlie, puzzle) occurs more often than either
play(charlie, ball) or play(charlie, doll), and win(sophia) is more
likely to co-occur with play(sophia, soccer) than with either
play(sophia, chess) or play(sophia, hide&seek).

2.1.2.2. Games and toys. As listed in Table 4, there are
restrictions on the places where each game and each toy
can be played (with), as well as the number of people that
can play a particular game or with a particular toy at any
one time. Each person can only play one game or with
one toy at a time. Someone who plays soccer, plays with
the ball, but no other combination of game and toy is pos-
sible. Someone who plays well or badly, must play a game.

2.1.2.3. Being there. Everybody is at exactly one place. If
someone plays hide&seek in the playground, all players are
in the playground. The two players of a chess match are in
the same place. The girls tend to hang out at the same
place, while charlie avoids them.

2.1.2.4. Winning and losing. One cannot both win and lose,
nor can two people win at the same time. If someone wins,
all other players lose, and if there is a loser, there must be
one winner. Someone who wins or loses, plays a game.
Someone who plays well is more likely to win, and whoever
plays badly is more likely to lose. Winning is usually done
easily by someone who plays well and difficultly by those
playing badly.

2.2. Representation

2.2.1. Objective
Our objective is to find a representational scheme for

events that implements an important property of mental
representations: direct inference (see Section 1.2). This is
accomplished when co-occurrence relations among the
44 microworld events are apparent in relations among
their representations. More precisely, using only the

Table 2
Construction of basic events from microworld concepts. Variables refer to
those in Table 1.

Event name #

playðp; gÞ 3� 3 ¼ 9
playðp; tÞ 3� 3 ¼ 9
winðpÞ 3
loseðpÞ 3
placeðp; xÞ 3� 4 ¼ 12
manner(playðpÞ;mplayÞ 3� 2 ¼ 6
manner(win,mwin) 2

Total 44

Table 3
Personal specialties and preferences.

Person Specialty Preferred

Toy Places

charlie chess puzzle bathroom, bedroom

heidi hide&seek doll –
sophia soccer ball street, playground

Table 4
Restrictions on games and toys.

Game/toy # Players Possible places

chess 0, 2 bedroom, playground

hide&seek 0, 2, 3 bedroom, bathroom, playground

soccer 0, 2, 3 street

puzzle 0, 1 bedroom

ball 0, 1, 2, 3 street, playground

doll 0, 1, 2, 3 bedroom, playground

Table 1
Concepts (entities and predicates) in the microworld.

Class Variable Class members (concepts) #

People p charlie, heidi, sophia 3
Games g chess, hide&seek, soccer 3
Toys t puzzle, ball, doll 3
Places x bathroom, bedroom, playground, street 4
Manners of playing mplay well, badly 2
Manners of winning mwin easily, difficultly 2
Predicates – play, win, lose, place, manner 5
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representations of any pair of microworld events a and b, it
should be possible to accurately estimate the conditional
probability that a occurs in the microworld given that b
does (i.e., PrðajbÞ). This conditional probability estimate,
denoted sðajbÞ, is called the belief value of a given b, since
it indicates the extent to which a might be believed to be
the case, given that b is the case. If belief values indeed
approximate the probabilities in the microworld, that is,
if sðajbÞ � PrðajbÞ, then a representation of b is also a rep-
resentation of anything that depends on b in the micro-
world, so direct inference occurs. In Section 3.2, we
explain how these representations of events serve as rep-
resentations of sentence meaning in our sentence compre-
hension model.

Note that we are concerned with representing only
events and not concepts. The concepts that appear in an
event’s propositional form do not even directly affect the
event’s representation. Take, for instance, the three basic
events playðp; soccerÞ; playðp; ballÞ, and playðp; puzzleÞ, for
any person p. Looking only at propositional forms, the
three differ from one another to the same extent: They
are identical except for their second argument. The case
is very different, however, if we consider the state of affairs
in the world described by these propositions: playðp; soccerÞ
implies that playðp; ballÞ, so the two will often co-occur,
while playðp; soccerÞ excludes playðp; puzzleÞ, so the two
never co-occur. The representations of these three events
should encode their co-occurrence relations rather than
their conceptual relations in that sðplayðp; ballÞj
playðp; soccerÞÞ � 1 while sðplayðp; puzzleÞjplayðp; soccerÞÞ �
0.

2.2.2. Situation space
For their DSS model, Frank et al. (2003) developed a

representational scheme that has exactly the properties
we desire. In that model, each microworld event a is as-
signed a situation vector lðaÞ ¼ ðl1ðaÞ; . . . ;lnðaÞÞ 2 ½0;1�

n,
that is, a point in situation space. The vector’s individual
components liðaÞ are not generally interpretable. Situation
vectors represent events by virtue of encoding the events’
probabilities in the microworld. As explained in detail be-
low, both prior and conditional probabilities of events can
be estimated from the events’ representations. Moreover, a
vector representation of any boolean combination of
microworld events (called a complex event) can easily be
computed from the vectors representing the events
involved.

Due to situation vectors having real values, there are
infinitely many of them. In contrast, there are only a finite
number of basic or complex events. We will use the term
‘situation’ (or ‘microworld situation’) for anything that is
represented by some vector in situation space. This means
that basic and complex events are themselves situations,
but that most (i.e., infinitely many) situations are not
events.

It is important to note that situation vectors are not
compositional: They do not have parts representing the
concepts of Table 1. This means that any systematicity can-
not be explained by resorting to the classical idea of com-
positionality. Also, situation vectors are not functionally
compositional in the sense of van Gelder (1990), that is,

they cannot be computed from representations of con-
cepts, simply because there exist no such representations.

2.2.2.1. Computing belief values. First, the prior probability
that event a occurs is estimated from its vector representa-
tion by the average value of the vector’s components:

sðaÞ ¼ 1
n

X
i

liðaÞ � PrðaÞ; ð1Þ

which is called the prior belief value of a. Second, Prða ^ bÞ,
the prior probability of the occurrence of the conjunction
a ^ b (with a – b) is estimated by

sða ^ bÞ ¼ 1
n

X
i

liðaÞliðbÞ � Prða ^ bÞ: ð2Þ

For a ¼ b, we define that sða ^ aÞ ¼ sðaÞ, since
Prða ^ aÞ ¼ PrðaÞ. This is different from Frank et al. (2003)
where, in general, sða ^ aÞ – sðaÞ. Given situation vectors
for which Eqs. (1) and (2) hold, an expression for belief val-
ues sðajbÞ follows directly. By definition, PrðajbÞ ¼
Prða ^ bÞ=PrðbÞ, so the conditional probability is estimated
by

sðajbÞ ¼ sða ^ bÞ
sðbÞ ¼

P
iliðaÞliðbÞP

iliðbÞ
� PrðajbÞ: ð3Þ

2.2.2.2. Representing complex events. Vector representa-
tions of negations and conjunctions of (basic or complex)
events are computed as is common in fuzzy logic:

lð:aÞ ¼ 1� lðaÞ
liða ^ bÞ ¼ liðaÞliðbÞ for a – b: ð4Þ

Furthermore, we define lða ^ aÞ ¼ lðaÞ. It is easy to see
that these operations retain the relations between vectors
and probability estimates, as expressed by Eqs. (1)–(3). The
belief value of a negation is sð:aÞ ¼ 1� sðaÞ, in accordance
with the fact that Prð:aÞ ¼ 1� PrðaÞ. Also, combining Eqs.
(1) and (4) indeed yields the expression for sða ^ bÞ of Eq.
(2).

A well-known fact from propositional logic is that any
boolean combination of propositions can be expressed
using only the operators for negation and conjunction.
Therefore, our definitions of negation and conjunction lead
to a representation for any complex event. For example, a
disjunction is defined by a _ b � :ð:a ^ :bÞ. There-
fore, liða _ bÞ ¼ 1� ðð1�liðaÞÞð1�liðbÞÞÞ ¼ liðaÞ þliðbÞ�
liðaÞliðbÞ.

2.2.3. Organizing situation space
As the above discussion makes clear, once we have ba-

sic event vectors such that Eqs. (1) and (2) hold, we can
compute the vector for any microworld event and estimate
the probabilities of any event given any situation vector.
The question remains how to find such vectors. Following
Frank et al. (2003), we do this by automatically generating
a large number (25000) of ‘observations’ of states-of-affairs
in the microworld. In each of these observations, each basic
event is either the case or not the case. More formally, an
observation takes the form of a 44-dimensional binary vec-
tor Sk, the components of which indicate the status of all
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basic events at one instant k: If basic event a occurs at that
instant, then SkðaÞ ¼ 1. If a does not occur, SkðaÞ ¼ 0.

Microworld constraints are apparent in these examples.
For instance, play(charlie, soccer) implies that
:playðcharlie; chessÞ, so if Sk(play (charlie, soccer)) = 1 then
Skðplayðcharlie; chessÞÞ ¼ 0. Also, win(sophia) is more likely
when manner(play(sophia), well), so there is a positive
correlation between the values of SkðwinðsophiaÞÞ and
Sk(manner(play(sophia), well)) over all k.

Maximum likelihood estimates of the probabilities of
basic events and conjunctions are easy to compute from
the observation vectors S1; . . . ; SK (where K is the number
of observations)

PrðaÞ � 1
K

X
k

SkðaÞ; ð5Þ

Prða ^ bÞ � 1
K

X
k

SkðaÞSkðbÞ: ð6Þ

Comparing Eqs. (5) and (6) to Eqs. (1) and (2), respectively,
it is obvious that taking lðaÞ ¼ ðS1ðaÞ; . . . ; SKðaÞÞ leads to
basic event vectors with the desired properties, but only
if K is large enough. Unfortunately, taking a very large
number of observations, like K ¼ 25000 as used here,
makes the number of situation space dimensions unpracti-
cally large. Reducing K to a more manageable level, on the
other hand, would reduce the quality of the probability

estimates. Therefore, a dimensionality-reduction tech-
nique is applied to transform the observation vectors S into
situation vectors l that have a more reasonable number of
dimensions. Note that this is not intended to simulate the
psychological process of developing event representations.
That is, it is merely a tool to obtain compressed represen-
tations. Also, we do not make any cognitive claims about
how people perceive (co-)occurrences of discrete events
in the world, but simply assume that they can reliably per-
ceive such (co-)occurrences.

As illustrated in Fig. 1, the observation vectors S are
used as training input to a self-organizing system called a
Competitive Layer, consisting of n units. Each of these units
is associated to 44 values, corresponding to the 44 basic
microworld events. During training, these values are
adapted to the observations in an unsupervised manner
reminiscent of the well-known Self-Organizing Map
(Kohonen, 1995).3 A description of the training algorithm
is provided in Appendix A. The result is a vector
lðaÞ 2 ½0;1�n for each basic event a, where n (the dimension-
ality of situation space) can be freely chosen prior to train-
ing. The quality of these vectors is investigated by
comparing the true (conditional) probabilities in the micro-
world to the corresponding belief values. If the coefficient of
correlation between them is close to 1, the vectors accu-
rately encode probabilities in the microworld. As it turns
out, larger n generally gives better results. For n ¼ 150, re-
sults are very good (r P :996; see Appendix A) and they
hardly improve for larger n. Therefore, we set n to 150.

3. The microlanguage

Events in the microworld can be described by sentences
in a microlanguage. Below, we present this language’s lex-
icon and grammar, and informally describe its semantics.
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Fig. 1. Transforming microworld observations into representations of basic events. A value of 1 in the observations (row vectors Sk) denotes the occurrence
of a basic event at a particular moment in the microworld, while 0 denotes non-occurrence. Individual values of basic event representations (column
vectors lðaÞ) are between (and usually close to) 0 and 1, and are not interpretable.

Table 5
Lexicon of the microlanguage.

Class Words #

Proper nouns charlie, heidi, sophia 3
(Pro)nouns boy, girl, someone, chess, hide-and-seek,

soccer, football, game, puzzle, ball, doll,
jigsaw, toy, ease, difficulty, bathroom,
bedroom, playground, shower, street

20

Verbs wins, loses, beats, plays, is, won, lost,
played

8

Adverbs well, badly, inside, outside 4
Prepositions with, to, at, in, by 5

Total 40

3 The difference between a Competitive Layer and a Self-Organizing Map
is that the latter creates a topological mapping of the input. Since the task
at hand does not require such a mapping, a Competitive Layer is preferred
over the Self-Organizing Map used by Frank et al. (2003).
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3.1. Words

The microlanguage’s 40 words are listed in Table 5. It is
generally straightforward how content words refer to the
concepts in Table 1. For instance, the word charlie refers
to the concept charlie. Note that some word pairs are syn-
onymous, that is, the two words refer to the same concept.
These word pairs are: {charlie, boy}, {soccer, football}, {puz-
zle, jigsaw}, and {bathroom, shower}. Some other content
words, such as girl, inside, and toy, affect sentence meaning
without referring to a single concept. For instance, a
statement about girl describes the disjunction of all
such statements about individual girls, that is, sophia and
heidi.

3.2. Sentences

Words can be combined into 13 556 different sentences
according to the grammar in Table 6. As an additional
constraint (not shown in the grammar), a sentence never
describes the case of someone beating or losing to
him/herself (which would violate the microworld
constraints). That is, sentences of the form p1 beats p2

and p1 loses to p2 are not allowed if ðp1; p2Þ 2 {(charlie,
charlie), (charlie, boy), (boy, charlie), (boy, boy), (heidi, heidi),
(sophia, sophia)}.

Each sentence has one meaning, corresponding to a ba-
sic or complex event. Table 7 lists some typical sentences
and the propositional notation of the event to which they
refer (those of other sentences can be extrapolated from
the ones listed). To find the situation vector representing

the event described by a sentence, we take the proposi-
tional form (as in Table 7), the representation(s) of the ba-
sic event(s) involved, and (if needed) compute the vector
for the described complex event by applying Eq. (4).

4. Simulations

4.1. The network

The sentence comprehension model consists in a simple
recurrent network (SRN; Elman, 1990) that transforms
microlanguage sentences into situation vectors. Here, we
describe the network’s architecture, a measure for the ex-
tent to which input sentences are understood, and details
of the training method. The architecture is the most basic
form of a SRN (e.g., there were no additional hidden layers)
and the training regime and algorithm are as simple as
possible (e.g., the learning rate is constant). Although
increasing the complexity of the network or the training
regime may improve performance, we wanted to make
sure that any systematic behavior that is observed would
not critically depend on such complexities.

4.1.1. Network architecture
The SRN has three layers of units, as shown in Fig. 2. The

input layer has 40 units, each corresponding to one word of
the microlanguage. Words enter the network one at a time.
The activation from the unit representing the current input

Table 7
Examples of microlanguage sentences and the propositional form of the
described event. c = charlie; h = heidi; s = sophia.

Sentence Semantics

charlie plays chess play(c, chess)
chess is played by

charlie
play(c, chess)

girl plays chess play(h, chess) _ play(s, chess)
heidi plays game play(h, chess) _ play(h, hide&seek) _ play(h, soccer)
heidi plays with toy play(h, puzzle) _ play(h, ball) _ play(h, doll)
sophia plays soccer

well
play(s, soccer) ^ manner(play(s), well)

sophia plays with
ball in street

play(s, ball) ^ place(s, street)

someone plays with
doll

play(c, doll) _ play(h, doll) _ play(s, doll)

doll is played with play(c, doll) _ play(h, doll) _ play(s, doll)
charlie plays play(c, chess) _ play(c, hide&seek) _ play(c, soccer) _

play(c, puzzle) _ play (c, ball) _ play(c, doll)
heidi wins win(h)
heidi loses at chess lose(h) ^ play(h, chess)
chess is lost by heidi lose(h) ^ play(h, chess)
sophia wins with

ease
win(s) ^ manner(win, easily)

charlie wins inside win(c) ^ (place(c, bedroom) _ place(c, bathroom))
charlie wins outside win(c) ^ (place(c, street) _ place(c, playground))
soccer is won (win(c) ^ play(c, soccer)) _ (win(h) ^ play(h, soccer)) _

(win(s) ^ play(s, soccer))
charlie loses to

sophia
win(s) ^ lose(c)

charlie beats
someone

win(c) ^ (lose(c) _ lose(h) _ lose(s))

sophia beats charlie
at chess

win(s) ^ lose(c) ^ play(s, chess)

Table 6
Grammar of the microlanguage (see text for additional constraints).
Variable n 2 fperson; game; toyg denotes noun types; v 2 fplay; win;
loseg are verb types; VP = verb phrase; APP = adverbial/prepositional
phrase; PP = Prepositional phrase. Items in square brackets are optional.

S ? NnVPn;vAPPn;v

Nperson ? charlie j heidi j sophia j someone j boy j girl
Ngame ? chess j hide-and-seek j soccer j football j game
Ntoy ? puzzle j ball j doll j jigsaw j toy
VPperson, play ? plays
VPperson, win ? wins j beats Nperson

VPperson, lose ? loses j loses to Nperson

VPgame, play ? is played
VPgame, win ? is won
VPgame, lose ? is lost
VPtoy, play ? is played with
APPperson, play ? [Ngame] [Manner] [Place] j PPtoy [Place] j Place PPtoy

APPperson, win ? [PPmanner] [PPgame] [Place] j PPgame PPmanner j
Place PPgame

APPperson, lose ? [PPgame] [Place] j Place PPgame

APPgame, play ? [Manner] [PPperson] [Place]
APPgame, win ? [PPmanner] [PPperson] [Place]
APPgame, lose ? [PPperson] [Place]
APPtoy, play ? [PPperson] [Place] j Place PPperson

Manner ? well j badly
Place ? inside j outside j PPplace

PPplace ? in bathroom j in shower j in bedroom j in street j
in playground

PPperson ? by Nperson

PPgame ? at Ngame

PPtoy ? with Ntoy

PPmanner ? with ease j with difficulty
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word is sent to the 120-unit hidden layer4 that receives,
through recurrent connections, its own previous activation
pattern as additional input and thereby comes to represent
the word sequence so far. The activation pattern over the
150-unit output layer, constituting the situation vector con-
structed by the network, ideally represents the event de-
scribed by the input sentence.

4.1.2. Rating the output
Ideally, the model transforms all sentences describing

some (basic or complex) microworld event a into its vector
representation lðaÞ. In practice, the model’s actual output
situation vector lðzÞ is at best similar to lðaÞ. Given some
output vector lðzÞ, we obtain information about the repre-
sented situation z by looking at the belief values sðbjzÞ for
different events b. In particular, the extent to which the
model has understood the sentence describing event a is
apparent from sðajzÞ.

More formally, the comprehension score is a value be-
tween �1 and +1 that is computed from belief values
sðaÞ and sðajzÞ. If the model has simulated sentence com-
prehension even minimally, the belief value of the de-
scribed event a in situation z should be larger than the
prior belief value, that is, sðajzÞ > sðaÞ. Ideally, z ¼ a so
sðajzÞ ¼ 1. If the network ‘misunderstood’, then
sðajzÞ < sðaÞ. In the worst possible case, sðajzÞ ¼ 0. The
comprehension score is the attained fraction of the maxi-
mum possible increase (or decrease) in belief value of a,
as expressed by Eq. (7) below. Positive values indicate
some level of correct comprehension, while negative val-
ues indicate comprehension errors.

comprehension ¼
sðajzÞ�sðaÞ

1�sðaÞ ifsðajzÞ > sðaÞ
sðajzÞ�sðaÞ

sðaÞ otherwise:

8<
: ð7Þ

Some complex events violate the microworld’s constraints,
for example, winðcharlieÞ ^ loseðcharlieÞ can never occur, nor
can winðheidiÞ ^ :winðheidiÞ. We shall call such events (as
well as sentences describing them) unlawful. Ideally,
sðaÞ ¼ 0 for unlawful a because such a never occurs in
the world (i.e., PrðaÞ ¼ 0). Perfect comprehension means
that z ¼ a so sðzÞ ¼ 0, in which case sðajzÞ is not defined.
To prevent this problem, we leave comprehension scores
undefined for unlawful a. In practice, we are not interested
in comprehension of unlawful sentences anyway.

4.1.3. Network training
Ten networks, differing only in their initial random con-

nection weights, were trained twice, once for each of two
sets of training sentences (as presented in Section 4.2).
All training sentences from a set were presented in random
order, and the standard backpropagation algorithm was
used for adapting the network’s connection weights. Initial
connection weights were taken randomly from a uniform
distribution between �0:15. The backpropagation’s learn-
ing rate parameter was fixed at .02, and no momentum
was used.

After processing each word of a training sentence, the
network was trained to give as output the vector repre-
senting the event described by the complete sentence.
Although this is similar to the task of a language learner
who perceives simultaneously a situation in the world
and an utterance describing that situation, we stress that
the model is not intended to simulate human language
acquisition.

Training was repeated until the average comprehension
score (see Eq. (7)) on training sentences reached .5. On
average, 659 presentations of the training set were needed
to reach this criterion. Training up to an average compre-
hension score of .5 might not seem like much, but it should
be taken into account that the training set (and, thereby,
the average comprehension score) is dominated by long
sentences that describe highly complex events. For exam-
ple, sophia beats charlie easily at chess in bedroom describes
a conjunction of as much as five basic events (i.e.,
winðsophiaÞ ^ loseðcharlieÞ ^mannerðwin; easilyÞ ^ playðsophia;

chessÞ ^ placeðsophia; bedroomÞ) and a comprehension score
close to 1 would require this complete conjunction to be
understood nearly perfectly. Test sentences are generally
shorter and describe simpler events than training sen-
tences. Consequently, they often result in comprehension
scores close to 1, as we shall see in Section 5.

4.2. Training and test sentences

Two sets of training sentences were constructed, con-
taining on average 9534 sentences (i.e., 70.3% of all possi-
ble sentences). All sentences that are missing in one set
are present in the other, making sure that the results we
find do not crucially depend on the exclusion of some very
particular set of sentences during training. Since the choice
of training set had no significant qualitative effect on

4 In preliminary simulations, we experimented with hidden layer sizes
between 40 and 150 and found that larger networks generalize better (the
same was found by Frank & Haselager, 2006). For reasons of training
efficiency, we settled for a hidden layer size of 120.

input (40 units)
words

hidden (120 units)
word sequences

output (150 units)
situation vectors

Fig. 2. Simple recurrent network for transforming word sequences into
situation vectors. Arrows denote connections from each unit in one layer
to all units in the next.
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model performance, we will usually collapse over the two
training sets. That is, when referring to a sentence as a
‘training sentence’ or ‘test sentence’, we leave implicit
which of the two training sets was used.

The sentences that are excluded from a training set are
divided into four groups, called the Word, Sentence, Com-
plex Event, and Basic Event groups. We shortly present the
rationale behind these groups. Each group came in two
versions, one for each of the two training sets. After train-
ing, the network is tested on novel sentences from these
four groups. As explained below, sentences from each
group afford testing for a particular level of systematicity,
and model performance is expected to decrease when test-
ing consecutively with sentences from the Word, Sentence,
Complex Event, and Basic Event groups.

4.2.1. Word group
All sentences in the Word group contain two words that

have a synonym in the microlanguage. More precisely, the
first training set has no sentences containing both charlie
and soccer, nor any sentence containing both boy and foot-
ball. In the other set, these word combinations are re-
versed: It has no sentences containing either charlie and
football, or boy and soccer.

When the network is tested, Word group sentences can
be understood by simply generalizing the use of one word
of a synonym pair to contexts in which only the other syn-
onym has been seen. For instance, to correctly understand
the test sentence charlie plays soccer, a sufficiently trained
network only needs to have learned that charlie is the same
as boy, or that soccer is the same as football. This, we expect,
will be accomplished easily because two synonymous
words often occur in the same sentence context and such
sentences describe identical situations.

4.2.2. Sentence group
The Sentence group contains sentences with phrases of

the form p1 beats p2 and p1 loses to p2, where the words
denoted by p1 and p2 depend on the training set. The fol-
lowing combinations are excluded from the first training
set: ðp1; p2Þ 2 fðcharlie;heidiÞ; ðboy;heidiÞ; ðheidi; sophiaÞ;
ðsophia; charlieÞ; ðsophia; boyÞg. In the second training
set, there are no sentences in which ðp1; p2Þ 2 fðcharlie;
sophiaÞ; ðboy; sophiaÞ; ðheidi; charlieÞ; ðheidi; boyÞ; ðsophia;
heidiÞg.

The test sentences in the Sentence group (like those in
the Word group) describe events that also appear in train-
ing sentences. For example, the training sentence heidi
loses to charlie describes the same event as the test sen-
tence charlie beats heidi. To understand such a test sen-
tence, the network needs to generalize to the new
sentence but not to a new event, that is, it must construct
a situation vector that it learned to construct during train-
ing. Therefore, we expect these test sentences to be pro-
cessed relatively well compared to sentences that do
require generalization to a new event.

4.2.3. Complex Event group
The previous two groups were defined by particular

combinations of words. For the Complex Event group, on
the other hand, sentences describing particular complex

events are selected: The two training sets contain no sen-
tences describing particular conjunctions of games and
place. In particular, sentences in the first training set never
describe events in which hide&seek is played anywhere in-
side (i.e., in bathroom or bedroom), nor any event in which
chess is played outside (i.e., in street or playground). For the
second training set, these combinations of games and
places are reversed.

To understand a new sentence from this group, the net-
work must construct a complex event on which it was not
trained. For example, to process the test sentence sophia
plays chess in playground, the network has to construct
the situation vector of the novel conjunction
playðsophia; chessÞ ^ placeðsophia; playgroundÞ. Because of the
systematic relation between lðaÞ;lðbÞ, and the conjunc-
tion lða ^ bÞ, as expressed by Eq. (4), such generalization
is possible in principle. Nevertheless, Complex Event group
test sentences are expected to lead to lower comprehen-
sion scores than test sentences from the Word and Sen-
tence groups because generating an output vector that
was never a target during training is likely to be challeng-
ing for the network.

4.2.4. Basic Event group
All sentences in the Basic Event group describe one of

three basic events. To be precise, the first training set con-
tains no sentences stating that play(charlie, doll), play(heidi,
ball), or play(sophia, puzzle). In the second training set, no
sentence describes play(charlie, ball), play(heidi, puzzle), or
play(sophia, doll).

To correctly process test sentences from the Basic Event
group, the network needs to construct the representation
of a basic event on which it was not trained. For instance,
it may never have learned to produce the output vector
l(play(heidi, ball)). It seems impossible for this network to
correctly process the test sentence heidi plays with ball
since l(play(heidi, ball)) is not computable from tokens for
heidi, doll, or play. To understand this sentence, the network
cannot take advantage of any systematic relation between
sentences of the form p plays with t and situation vectors
lðplayðp; tÞÞ, because there is no such systematic relation.
In a classical symbol system, precisely such a relation is
responsible for systematic behavior. According to the clas-
sical view, our network should therefore not be able to
understand Basic Event group test sentences.

Table 8
Test sentences frames and number of test sentences per group. See text for
constraints on variable instantiation.

Group Sentences #

Word p plays g 8
g is played by p

Sentence p1 beats p2 20
p1 loses to p2

Complex Event p plays g [in] x 80
g is played by p [in] x

Basic Event p plays with t 20
t is played with by p

Total 128
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4.2.5. Specification of test sentences
So far, we have only presented examples of test sen-

tences. In total, there were 128 different test sentences,
which were all the lawful non-training sentences that
can be formed by taking the sentence frames from
Table 8 and instantiating the variables by words from the
following sets: p 2 fcharlie; boy; heidi; sophiag; t 2 fball;
doll; puzzle; jigsawg; g 2 fhide-and-seek; chess; soccer;
footballg, and x 2 finside; outside; bathroom; shower;
bedroom; playgroundg.

4.3. Rating systematicity

When a test sentence describes some event a, the com-
prehension score for a should be positive. However, this is
not always sufficient to conclude that the sentence was
understood properly. In the Sentence and Complex Event
test groups, a is a conjunction of two basic events, and these
should individually have positive comprehension scores too.
Take, for instance, the sentence charlie beats heidi, which
states that winðcharlieÞ ^ loseðheidiÞ. If the network has under-
stood only win(charlie) this will already lead to a positive
comprehension score for the conjunction, because the
information that win(charlie) makes it more likely that

winðcharlieÞ ^ loseðheidiÞ. Conversely, positive comprehension
scores for both basic events individually should not be mis-
taken for a positive comprehension score for their conjunc-
tion, because wrongly believing that either win(charlie) or
lose(heidi) would also lead to positive comprehension scores
for these two basic events, even though their conjunction is
excluded. For sentences describing a conjunction, it is there-
fore important to look at comprehension scores for both the
conjunction and the basic events it comprises.

Even if test sentences are understood to some extent,
this need not indicate semantic systematicity. Take again
the test sentence charlie beats heidi. It is possible that the
network understands nothing more than the information
that there is ‘beating’ going on, that is, there is a winner
and there is a loser. This in itself suffices for positive com-
prehension scores for win(charlie), lose(heidi), and their con-
junction, that is, for precisely the events stated by the test
sentence. However, it also leads to positive comprehension
of basic events that are inconsistent with the sentence,
namely lose(charlie), win(heidi), and win(sophia). To warrant
the conclusion that the network behaves systematically,
such ‘competing events’ should have comprehension
scores that are negative, or at least significantly smaller
than those of the described events.

To summarize, processing a test sentence should result
in positive comprehension scores for the described basic
event(s) and (if applicable) their conjunction, and signifi-
cantly smaller (ideally, even negative) comprehension
scores for competing events. Table 9 lists which basic
events we regard as described or competing for test sen-
tences of the four groups. A competing event is always
inconsistent (given the constraints of the microworld) with
the described situation, but can be described by a superfi-
cially similar sentence.

5. Results and explanations

Fig. 3 plots the average comprehension scores for de-
scribed and competing events, resulting from processing
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Fig. 3. Average comprehension scores of described (left) and competing (right) events, after processing training (black bars) or test sentences (white bars)
from each of the four groups.

Table 9
Described and competing events for test sentences in each group of Table 8.
Within each group, identical variables have identical values and variables
with different indices have unequal values.

Group Described event(s) Competing events

Word play(charlie, soccer) play(charlie, hide&seek)
play(charlie, chess)

Sentence winðp1Þ winðp2Þ
loseðp2Þ winðp3Þ

loseðp1Þ

Complex Event playðp; g1Þ playðp; g2Þ
placeðp; x1Þ placeðp; x2Þ

Basic Event playðp1; t1Þ playðp1; t2Þ
play(p2, puzzle) (only if t1 ¼ puzzle)
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test sentences and matched training sentences from each
of the four groups. The training sentences that gave rise
to these results were the same as the test sentences, be-
cause all networks trained on one training set were tested
using sentences from the other training set, and vice versa.
Since there is no reason to expect the test sentences to be
understood better than matched training sentences, com-
prehension scores on tests should be assessed relative to
the scores on the corresponding training items.

Sentences of the Word group are comprehended very
well: Comprehension scores are large and positive for de-
scribed events, and strongly negative for competing events.
Test sentence scores are close to those of training sen-
tences, indicating that test sentences are comprehended
as well as could be reasonably be expected.

As we move from the Word to the Sentence and Com-
plex Event groups, comprehension scores resulting from
test sentences decrease in absolute value, while remaining
the same for training sentences. This effect of test group
was expected considering the differences in the required
level of systematicity (see Section 4.2), but it should be ta-
ken into account that sentences from different groups dif-
fer in many other aspects as well.

Training sentences from the Basic Event group are
understood remarkably poorly. Presumably, this is because
these sentences, which are all about playing with toys, oc-
cur much less frequently than the sentences making up the
other three groups, which are about playing games. As a re-
sult, the networks might not have been sufficiently ex-
posed to Basic Event group sentences. Interestingly, even
in this group, test sentences are understood to some ex-
tent: Average comprehension scores are positive for de-
scribed events and negative for competing events (sign
tests showed these values to significantly differ from zero:
N ¼ 200; z ¼ 14:1; p � 0 and N ¼ 560; z ¼ 3:0; p < :003,
respectively). This is noteworthy because, as explained in
Section 4.2.4, no sign of systematicity is expected here
from the classical viewpoint.

An error occurs whenever a described event has a neg-
ative comprehension score, or when a competing event has
a positive comprehension score. There were no errors on
described events, except in just 1.9% of the cases for Com-
plex Event group test sentences. For competing events, er-
ror rates increase strongly when testing consecutively with
sentences from the Word, Sentence, Complex Event, and
Basic Event groups, as shown in Table 10.

We will now look at comprehension scores in each of
the groups in more detail. Tables 11–14 display compre-
hension scores after processing the test sentences from
each of the different groups, averaged over all trained net-
works. In these tables, scores in bold are comprehension
scores of described events, that is, these should be positive.
The other scores are comprehension scores of competing
events, and should be negative. No results are presented
for events that are neither described nor competing, which
is why empty cells appear in Tables 12 and 14.5

5.1. Word group

5.1.1. Results
As Table 11 shows, test sentences from the Word group,

all stating that play(charlie, soccer), are processed very well.
Especially passive test sentences are understood close to
perfectly, as is apparent from the comprehension scores
for the described event being close to 1. Also, the network
does not wrongly believe charlie to play some other game.
To understand the test sentence charlie plays soccer, the
network must have learned that soccer and football have
the same effect on the situation vector under construction,
that is, that they are synonymous. The same holds for the
synonym pair charlie and boy in passive test sentences.

5.1.2. Explanation
It is not hard to explain how connectionist systematic-

ity in the Word group comes about. In short, systematicity
arises because synonymous words receive highly similar
representations during training. The vector of connection
weights originating from an input unit can be viewed as
the network’s representation of the word corresponding
to that unit. Obviously, if two words have identical repre-
sentations, the effect of their occurrences will be identical,
that is, they are perfect synonyms.

There are many training contexts in which both halves
of a synonym pair occur, for example, heidi plays soccer
and heidi plays football are both in the training set. The tar-
get output for these two training examples is the same,
namely lðplayðheidi; soccerÞÞ. As a result, the training algo-
rithm changes the network’s connection weights in the
same direction in both cases. This means that the weights
of connections from input units converge if the units stand
for synonymous words. Synonyms thereby receive highly
similar representations and, therefore, have similar effects

Table 10
Percentage of cases in which a competing event erroneously receives a
positive comprehension score.

Group Sentences

Training (%) Test (%)

Word 0.0 0.0
Sentence 0.0 6.7
Complex Event 3.9 24.9
Basic Event 21.2 56.4

Table 11
Relevant comprehension scores after processing test sentences from the
Word group (c = charlie).

Test sentence Comprehension score of

play(c, soccer) play(c, chess) play(c, hide&seek)

charlie plays soccer .79 �.88 �.78
charlie plays football .75 �.85 �.78
boy plays soccer .75 �.85 �.78
boy plays football .79 �.88 �.78
soccer is played by charlie .92 �.98 �.98
football is played by charlie .91 �.97 �.95
soccer is played by boy .91 �.97 �.95
football is played by boy .92 �.98 �.98

5 These results, and all other data, are available upon request.
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on the network, independent of the context in which the
words appear.

Whether or not this explanation holds can be investi-
gated by directly observing the word representations, or
rather, differences between these representations. For this
analysis, we used the network that showed best perfor-
mance on test sentences from the Word group, for each
of the two training sets. We measured the Euclidean dis-
tance between all pairs of word representations. Averaged
over all word pairs, the distance was 20.5 (sd = 5.69), while
the average distance between the words of the four syno-
nym pairs was only 0.697 (sd = 0.099). Indeed, the repre-
sentations of synonymous words are much more similar
than those of other word pairs.

5.2. Sentence group

5.2.1. Results
Most test sentences from the Sentence group are under-

stood quite well. As can be seen in Table 12, comprehen-
sion scores for the two described basic events and their
conjunction are strongly positive. In general, the network
has learned that sentences of the forms p1 beats p2 and p2

loses to p1 refer to the event winðp1Þ ^ loseðp2Þ. However,
the network does make a few errors in the sense that some
competing events receive positive comprehension scores.
For example, after processing charlie/boy loses to heidi,
the output situation vector results in a positive compre-
hension score for win(sophia), even though this is clearly
inconsistent to the information in the sentence, which
states that heidi wins. Note, however, that this score of
.08 is only marginally significantly different from 0
ðt19 ¼ 1:79; p < :09Þ.

The reason for this error is that every training sentence
starting with charlie/boy loses to describes an event in
which it is indeed sophia who wins (except when the win-
ner is ambiguous, as in charlie loses to someone). That is, the
network has learned that after the sentence fragment char-
lie/boy loses to, the output should be a situation vector rep-
resenting (among others) win(sophia). This is difficult to
undo fully when the sentence’s last word turns out to be
heidi. Importantly, however, the comprehension score for
the described event win(heidi) is much larger than for the
competing win(sophia) (.65 and .08, respectively). This

means that the output vector more strongly encodes the
intended microworld situation. If forced to give one win-
ner, the information in this vector would provide the cor-
rect answer: It is heidi who wins. In general, the model
makes no errors if we take the basic event with the highest
comprehension score to be its response in a forced-choice
task. This is analogous to an experimental setting in which
subjects provide only discrete responses although their
internal representations are probabilistic in nature (cf. Spi-
vey, 2007).

5.2.2. Explanation
It is noteworthy that the model’s analogical representa-

tions are vital for successful processing of Sentence group
test sentences. As explained above, the absence of training
sentences like sophia loses to charlie results in a very strong
learned association between the word sequence sophia
loses to and the event win(heidi). The network will also have
learned that sentences ending with loses to charlie refer to
situations in which charlie wins. When tested on sophia
loses to charlie, why then would the network not conclude
both win(charlie) and win(heidi)? After all, the test sentence
provides evidence for both these events, considering its
meaning and its similarity to the training sentences. In-
deed, a model that uses symbolic representations might
construct as output winðheidiÞ ^ winðcharlieÞ, even though
the microworld does not allow for this complex event.
However, our model uses analogical representation that
encode the structure of the microworld. As a result, a rep-
resentation of win(charlie) is also a representation of
:winðheidiÞ. The network cannot represent a situation in
which both win(heidi) and win(charlie) are very likely. It
needs to choose between the two and, as it turns out, it
usually chooses correctly. This shows the model’s repre-
sentation of microworld structure to be crucial for its
systematicity.

There are two routes by which the network can come to
display this level of systematicity. First, the interpretation
of a test sentence may depend on its superficial similarity
to particular training sentences, that is, the similarities be-
tween the literal word sequences. In that case, the network
comprehends a test sentence of the form p1 beats p2 by its
superficial similarity to the two training sentences p1 beats
someone and someone beats p2. The first of these states that

Table 12
Relevant comprehension scores after processing test sentences from the Sentence group.

Test sentence Comprehension score of

Test event win(charlie) win(heidi) win(sophia) lose(charlie) lose(heidi) lose(sophia)

charlie/boy beats heidi .63 .90 �.93 �.91 �.92 .63
heidi loses to charlie/boy .69 .71 �.94 .01 �.89 .90
charlie/boy beats sophia .63 .87 �.84 �.83 �.76 .64
sophia loses to charlie/boy .85 .88 �.64 �.98 �.95 .92
heidi beats charlie/boy .62 �.88 .85 �.76 .65 �.81
charlie/boy loses to heidi .64 �.97 .65 .08 .91 �.84
heidi beats sophia .83 �.98 .90 �.82 �.84 .85
sophia loses to heidi .83 �.59 .85 �.85 �.83 .90
sophia beats charlie/boy .80 �.93 �.86 .88 .82 �.90
charlie/boy loses to sophia .68 �.94 .05 .68 .90 �.85
sophia beats heidi .76 �.95 �.70 .87 .76 �.74
heidi loses to sophia .87 �.77 �.89 .90 .91 �.89
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winðp1Þ, while the second says that loseðp2Þ. The conjunc-
tion of these two basic events is exactly the complex event
described by the test sentence. We will call this route the
‘conjunction route’, because test sentences are understood
as the conjunction of two basic events described by train-
ing sentences. Note that this strategy works similarly for
test sentences of the form p1 loses to p2.

The second route, which we will call the ‘inversion
route’ does not involve any combining of basic events. If
the network takes the inversion route, it has learned that
any training sentence of the form p3 beats p4 refers to the
same event as its ‘inverse’ p4 loses to p3, namely
winðp3Þ ^ loseðp4Þ. Now if the network receives the test sen-
tence p1 beats p2, this is interpreted by inversion as equiv-
alent to the training sentence p2 loses to p1, which the
network learned to map to the target output
lðwinðp1Þ ^ loseðp2ÞÞ. In this way, the network can produce
the same output vector for the test sentence. As was the
case for the conjunction route, it works similarly for test
sentences of the form p1 loses to p2.

The network does not need to choose between one
route or the other. It is quite possible that both are fol-
lowed simultaneously to different degrees, or that different
routes are taken for different test sentences. An analysis of
the network’s output, presented in Appendix B, revealed
that the conjunction route is usually preferred to some ex-
tent, but that there are a few instances in which the inver-
sion route was taken.

5.3. Complex Event group

5.3.1. Results
Results on test sentences from the Complex Event group

(see Table 13) are not unlike those of the Sentence group:
Comprehension scores are positive for the two basic events
described, as well as their conjunction. In general, the net-
work has learned that sentences of the forms p plays g in x
and g is played by p in x refer to the complex event
playðp; gÞ ^ placeðp; xÞ, even though that particular conjunc-

tion of basic events was never a target output during net-
work training. However, there are a few instances of
positive comprehension scores on competing events (i.e.,
errors). In particular, after processing sentences about
playing hide&seek in the bedroom, the competing event
play(p, bathroom) receives a comprehension score of .14.
The described event play(p, bedroom) scores slightly higher
but the difference is far from significant (N ¼ 80; z ¼
:35; p > :7 in a Wilcoxon matched-pairs signed-ranks test).
The other two cases of positive comprehension scores for
competing events are not as problematic because the cor-
responding described event scores much better.

5.3.2. Explanation
For comprehending test sentences from the Complex

Event group, the network cannot take the inversion route
described in Section 5.2. This is simply because there are
no training sentences that describe the same event as the
test sentences. These test sentences can therefore only be
understood by taking the conjunction route, that is, test
sentences p plays g in x (and their passive-voice counter-
parts) are understood by their superficial similarity to the
training sentences p plays g and p plays in x, which provide
playðp; gÞ and placeðp; xÞ, respectively. The network is able
to combine these by conjunction, giving an output vector
similar to lðplayðp; gÞ ^ placeðp; xÞÞ.

5.4. Basic Event group

5.4.1. Results
Basic Event group sentences are understood more

poorly than those from the other groups. Table 14 shows
that described events receive positive comprehension
scores, but that the same is true for many competing
events. Nevertheless, described events are encoded more
strongly than competing events. So, after processing test
sentences describing heidi playing with the puzzle, the aver-
age comprehension score is larger for play(heidi, puzzle) than
for play(sophia, puzzle). Although the difference is small, a

Table 13
Relevant comprehension scores after processing test sentences from the Complex Event group, averaged over p2{charlie, heidi, sophia}. Note: place(p, in) � place(p,
bathroom) _ place(p, bedroom) and place(p, out) � place(p, playground) _ place(p, street).

Test event Comprehension score of

Test
event

play(p,
chess)

play(p,
hide&seek)

play(p,
soccer)

place(p,
bathroom)

place(p,
bedroom)

place(p,
playground)

place(p,
street)

play(p, hide&seek) ^ place(p,
in)

.68 �.77 .89 �.99 .39 .06 �.51 �.97

play(p, hide&seek) ^ place(p,
bathroom)

.50 �.97 .94 �.99 .46 �.45 �.19 �.96

play(p, hide&seek) ^ place(p,
bedroom)

.35 �.66 .86 �.99 .14 .16 �.22 �.96

play(p, hide&seek) ^ place(p,
out)

.35 �.35 .50 �.02 �.20 �.81 .37 �.18

play(p, hide&seek) ^ place(p,
playground)

.42 �.25 .76 �.98 .07 �.71 .51 �.98

play(p, chess) ^ place(p,out) .55 .80 �.63 �.55 �.98 �.29 .55 �.70
play(p, chess) ^ place(p,

playground)
.67 .87 �.54 �.99 �.99 �.42 .73 �.99

play(p, chess) ^ place(p, in) .50 .83 �.53 �.98 �.72 .41 .07 �.96
play(p, chess) ^ place(p,

bedroom)
.58 .87 �.72 �.98 �.89 .52 �.03 �.95
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Wilcoxon matched-pairs signed-ranks test showed that it
is statistically significant ðN ¼ 40; z ¼ 2:11; p < :04Þ.

This is remarkable, because all training sentences con-
taining heidi describe events in which she was not playing
with the puzzle, and all training sentences containing puzzle
describe events in which it was not heidi playing with the
puzzle (except when the toy or player was not mentioned,
as in heidi plays with toy and puzzle is played with). There-
fore, a network that uses solely the learned associations
between sentence fragments and situation vectors would
give an output vector representing :playðheidi; puzzleÞ after
processing heidi plays with puzzle. The fact that our model
does not display such behavior, is clear evidence that the
network has learned more than mere associations between
the inputs and targets in the training data.

5.4.2. Explanation
If systematicity can only result from compositional,

symbolic representations, Basic Event group test sentences

would not be understood correctly because there is no sys-
tematic mapping between sentences of the form p plays
with t (or t is played with by p) and vectors lðplayðp; tÞÞ.
Also, a vector for playðp; tÞ cannot be computed on the fly
from play, p, and t, because the smallest meaningful unit
in the model is not the concept but the basic event. Never-
theless, we do observe signs of systematicity here.

How can this be explained? Fig. 4 shows the compre-
hension scores for several informative events, resulting
from processing test sentences from the Basic Event group.
For this analysis, we used the networks that performed
best on these test sentences, for each of the two training
sets.

First, let us look at the outcome for test sentences
describing a person playing with the ball, in the center pa-
nel of Fig. 4. The correct output for test sentences p1 plays
with ball is lðplayðp1; ballÞÞ, but considering the superficial
similarity to the training sentences p1 plays with doll/puz-
zle, we might expect such test sentences to incorrectly lead

Table 14
Relevant comprehension scores after processing test sentences from the Basic Event group. c = charlie; h = heidi; s = sophia.

Test event Comprehension score of

play(c, doll) play(c, ball) play(c, puzzle) play(h, doll) play(h, ball) play(h, puzzle) play(s, doll) play(s, ball) play(s, puzzle)

play(c, doll) .20 �.05 .01
play(c, ball) �.20 .49 �.41
play(h, ball) �.42 .55 �.56
play(h, puzzle) .05 .11 �.25 .18 .15
play(s, doll) .15 �.18 .09
play(s, puzzle) �.03 .13 .06 �.37 .29

-0.8 0 0.7

play(p1,doll)

play(p1,doll)

play(p1,ball)

play(p1,puzzle)

place(p1,bathroom)

place(p1,bedroom)

place(p1,playground)

place(p1,street)

play(p2,doll)  play(p3,doll)

play(p2,ball)  play(p3,ball)

play(p2,puzzle)  play(p3,puzzle)

place(p2,bath)  place(p3,bath)

place(p2,bed)  place(p3,bed)

place(p2,playgr)  place(p3,playgr)

place(p2,street)  place(p3,street)

-0.8 0 0.7

play(p1,ball)

comprehension score
-0.8 0 0.7

play(p1,puzzle)

Fig. 4. Averaged comprehension scores for several relevant events, resulting from processing test sentences describing playðp1; dollÞ (left), playðp1; ballÞ
(middle), or playðp1; puzzleÞ (right). The person mentioned in the test sentence is denoted p1, the other two are p2 and p3. Abbreviations: bath = bathroom;
bed = bedroom; playgr = playground.
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to output situations in which an inconsistent event
playðp1; dollÞ or playðp1; puzzleÞ is the case. However, this
not what we find: The comprehension scores for
playðp1; dollÞ and playðp1; puzzleÞ are negative after process-
ing p1 plays with ball. Instead, the test sentence seems to
be understood as sharing its meaning with training sen-
tences about someone else playing with the ball: After pro-
cessing p1 plays with ball, the comprehension score for
playðp2; ballÞ _ playðp3; ballÞ is larger than that of
playðp1; ballÞ. This might seem like a major error, but keep
in mind that it is indeed very likely that p2 or p3 plays with
the ball, given that p1 does. A similar pattern can be seen for
test sentences about p1 playing with the doll, which are not
interpreted according to their superficial similarity to
training sentences about p1 playing with another toy
(which would be inconsistent with the described event),
but are considered as referring to the same events as train-
ing sentences about someone else playing with the doll.

Test sentences about p1 playing with the ball or doll are
superficially similar to training sentences about p1 playing
with another toy, and to training sentences about someone
else playing with the mentioned toy. However, the de-
scribed event playðp1; t1Þ (with t1 ¼ ball or t1 ¼ doll) is sim-
ilar to playðp2; t1Þ but not to playðp1; t2Þ (with t1 – t2). This is
because in the microworld, two or three people often play
with the ball or doll, but the same person cannot play with
two different toys at the same time. Given that the net-
work cannot directly construct the correct situation vec-
tors for test sentences of the Basic Event group (as
argued above) it does the next best thing: Interpret these
test sentences by using their superficial similarity to train-
ing sentences that describe compatible events. This results
in the desired outcomes because, in the microworld, the
situation in which p2 plays with the ball or doll is quite a
lot like (i.e., often co-occurs with) the situation in which
p1 plays with the ball or doll, as described in the test sen-
tence. Note that this correct performance would not have
been possible without access to knowledge about the
microworld, as encoded in the situation vectors.

But what if playðp1; tÞ is not like playðp2; tÞ? This is the
case when t ¼ puzzle because two people cannot play with
the puzzle at the same time. As a result, test sentences p1

plays with puzzle (and their passive-voice counterparts)
cannot be properly understood by superficial similarity to
training sentences p2 plays with puzzle. Indeed, we find
such test sentences to be understood much more poorly
than those involving ball or doll. For example, the compre-
hension scores for playðp1; dollÞ and playðp2; puzzleÞ_
playðp3; puzzleÞ are slightly positive, even though these
events cannot co-occur with playðp1; puzzleÞ. These errors
result from the superficial similarity between the test sen-
tence and training sentences.

Nevertheless, the comprehension score for the described
event is clearly larger than for the incompatible events,
which is remarkable considering that nearly all training
sentences that are similar to this test sentence describe
incompatible events. A possible explanation for this posi-
tive finding is provided in the right panel of Fig. 4. Quite
noticeable is the large comprehension score for
placeðp1; bedroomÞ resulting from processing test sentences
about p1 playing with the puzzle. Indeed, someone who plays

with the puzzle must be in the bedroom. However, the
fact that the comprehension score for that basic event is lar-
ger than any other suggests that p1 plays with puzzle is
mainly interpreted as meaning placeðp1; bedroomÞ. Given
that p1 is in the bedroom, it is indeed likely that (s)he plays
with the puzzle, which explains the positive score of
playðp1; puzzleÞ.

When processing test sentences p1 plays with puzzle, the
network is only minimally distracted by the superficial
similarity to the training sentences p1 plays with ball/doll
and p2 plays with puzzle, which describe incompatible
events. Instead, the test sentences are correctly interpreted
as referring to an event in which p1 is in the bedroom. Again,
we find that the model does quite well considering that
representations of individual concepts do not exist and Ba-
sic Event group test sentences can therefore not be under-
stood directly.

As before, we find that the analogical nature of situation
vectors is crucial for this positive effect to occur. Had the rep-
resentations of playðp1; puzzleÞ and placeðp1; bedroomÞ been
symbolic, the test sentence p1 plays with puzzle would not
have resulted in an output representing placeðp1; bedroomÞ,
and even if it would have, this output would not also encode
the increased likelihood of playðp1; puzzleÞ.

6. Discussion

The model we presented shows that a neural network
with a standard architecture can display semantic systema-
ticity under a relatively unconstrained training regime. In
part, this is accomplished by relying on the structure of
the microworld, as reflected in the model’s analogical repre-
sentations. Additional structure is of course present in the
microlanguage. The network uses these external structures
to discover systematicity in the mapping from sentences to
event representations. That is, the systematicity originates
externally rather than being inherent to the network.

There are a number of standard counterarguments
against connectionist claims of this kind. First, the neural
network may be an implementation of a symbol system.
Second, the simulations may be mere demonstrations
rather than providing an explanation of systematicity.
Third, the model’s degree of systematicity may not be com-
parable to that of people. Fourth, the simulations may not
scale up to worlds of realistic size. In the following four
subsections, we discuss how these critiques relate to our
model.

6.1. Implementation of a symbol system

Fodor and Pylyshyn (1988) admit that a neural network
can be systematic if it implements a classical symbol sys-
tem. However, this would not constitute a connectionist
explanation of systematicity since it would be the imple-
mented symbol system, rather than the underlying net-
work, that does the explaining. As discussed in the
Introduction, several earlier proposals for semantically sys-
tematic connectionist models (Hadley & Cardei, 1999;
Hadley & Hayward, 1997; Miikkulainen, 1996) indeed de-
pended on symbolic representations or mechanisms.
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To uphold our claim that we have successfully dealt
with Fodor and Pylyshyn’s challenge, it is vital that our
model does not merely implement a symbol system. As
we have argued before, our model accomplishes systema-
ticity without implementing a compositional representa-
tional system, as is clear from the fact that situation
vectors do not have constituent structure. It is therefore
not a symbol system in the sense of Fodor and Pylyshyn,
who take the presence of combinatorial syntax and seman-
tics to be one of the hallmarks of a symbol system.

Marcus (1998b), on the other hand, defines a symbol
system as one that (among other things) performs opera-
tions over variables. A connectionist model that performs
such operations could therefore be considered an imple-
mentation of a symbol system. For instance, the Recursive
Auto-Associative Memory models proposed by Chalmers
(1990) and Niklasson and van Gelder (1994), consist of
two networks: The first learns to encode the possible
instantiations of a variable, and the second performs trans-
formations over the resulting representations. This archi-
tecture, so Marcus (1998b) argues, ‘precisely parallels the
division between encoding and computation in standard
symbolic models’ (p. 270) and is therefore not a relevant
counterexample to Fodor and Pylyshyn’s (1988) claims.
Contrary to this, our network, being a standard SRN, does
not make such a distinction between instantiations of vari-
ables and operations over variables, so it is not a symbol
system in the sense of Marcus (1998b).

One could argue that our model’s separation between
situation space development and SRN training comes
down to a division between encoding and computation,
similar to that in RAAM models. However, even if the
occurrence of a particular situation vector is considered
to be the instantiation of a variable, our model does not
perform any operations over this variable. Instead, the sit-
uation vector becomes ‘instantiated’ by the SRN during
sentence comprehension.

6.2. Demonstration versus explanation

Demonstrating that a specific connectionist model can
display systematicity is not enough for explaining systema-
ticity because the apparent structure-sensitive behavior of
a network might simply be the result of a specific arrange-
ment of the network’s representations or architecture. For
example, Frank (2006) noted that the models by Bodén
(2004) and Hadley et al. (2001) only managed to behave
systematically because they were specifically tailored for
that purpose. Likewise, the systematic connectionist model
proposed by Niklasson and van Gelder (1994) was criti-
cized by Hadley (1994a) and Phillips (1998) for depending
on hand-crafted input representations that explicitly en-
coded syntactic class information. In addition, Haselager
and van Rappard (1998) remarked that the model required
a very extensive and carefully arranged training regime.

Such counterarguments illustrate that assessing the
explanatory value of connectionist examples of structure-
sensitive processing is far from straightforward. The mat-
ter of distinguishing real systematicity from prearranged
performance comes to the fore in the discussion about Fo-
dor’s repeated claim that merely providing examples of

connectionist systematicity is far from sufficient to show
that connectionism can deal with systematicity in a com-
pletely satisfactory way. As he says, it is a law that cogni-
tive capacities are systematic (Fodor & McLaughlin, 1990;
Fodor & Pylyshyn, 1988).6

According to a relatively early interpretation of the law-
requirement (Butler, 1993; see also Aizawa, 1997b), the
idea is that it is not enough to merely show that systema-
ticity is possible on the basis of a connectionist architec-
ture; It must be indicated why systematicity is necessary
given the architecture. Likewise, Butler says, a theory of
planetary motion that merely allowed for the possibility
of elliptical orbits of planets would be considered as insuf-
ficient. To really count as an explanation, it would have to
show that the nature of such orbits necessarily followed
from the theory. Similarly, connectionists have to demon-
strate that systematicity necessarily follows from the
architecture.

Aizawa (1997b, 2002) has taken the debate a step fur-
ther by indicating that the requirement that the explanans
must necessitate the explanandum is not formulated suffi-
ciently exact. As he says, the Ptolomean theory of planetary
motion does necessitate the observed trajectories of the
planets. The problem is that it does this in an ad hoc or pre-
fabricated way (i.e., by the use of several, not indepen-
dently well-motivated additional hypotheses, such as
epicycles). Formulated in the context of systematicity:

once you have LOT [Language of Thought], you auto-
matically get the systematicity of thought. There are
no arbitrary hypotheses in the explanation. . .. If a
network can as easily generate a set of systematic rep-
resentations as not, then there must be in Connection-
ism some arbitrary hypothesis (Aizawa, 1997b, pp.
120–121).

So the question becomes, what would count as arbi-
trary, as distinct from well-motivated, non-arbitrary,
hypotheses? The history and philosophy of science do
not, as Aizawa (2002) notes, provide a definitive answer
to these questions. We cannot address this issue fully here,
but instead merely try to indicate in general terms why our
additional hypotheses are not to be considered as arbitrary.

Traditionally, connectionist solutions to the problem of
systematicity are sought in architectural constraints, com-
bined with specifics of training data. Such an approach is
unlikely to succeed in our opinion, because the specifics
of the architectures and training procedures appear to be
chosen to achieve the desired results rather than being
independently motivated. Moreover, the results are ob-
tained by limiting the robustness of the network. If the per-
formance of a network is overly dependent on the details
of its architecture and/or training regime, it cannot be a
satisfactory model of natural cognition that, after all, dis-
plays systematicity under a wide variety of circumstances.
As Chalmers (1993) suggests, networks need not only have
an appropriate architecture but also have to display syste-
maticity under many different learning conditions. This

6 Fodor’s claim about the lawfulness of systematicity has been ques-
tioned (e.g., Dennett, 1991; McNamara, 1993; Sterelny, 1990; Wilks, 1990).
See also Note 8.
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emphasizes the fact that merely demonstrating a network
to be systematic is not sufficient, since the performance
achieved might be an artificial result of the specific charac-
teristics of the network and the training and test data. In
developing our model, we therefore aspired to make it as
simple and general as possible, and refrained from using
a sophisticated architecture, training algorithm, training
regime, or search for optimal parameter settings. Also,
our results do not seem to depend crucially on the partic-
ular microlanguage, microworld, or network architecture:
Frank and Haselager (2006) present similar findings using
a simpler language and world, and different architecture.
Also, they show their results to be highly robust to differ-
ences in parameter setting.

Of course there is something additional that helps to
generate the systematicity displayed by our model. Syste-
maticity does not come about for free. Still, we would like
to argue that we did not invoke anything arbitrary. To ex-
plain this, we refer back to Simon’s (1969/1996) classical
example of the ant on the beach. The ant’s behavior looks
complicated and difficult to describe. Yet the complexity
may not reside within the ant, but could arise out of the
complexity of the surface of the beach. The same, Simon
suggests, might be true for human beings: ‘‘Human beings,
viewed as behaving systems, are quite simple. The appar-
ent complexity of our behavior over time is largely a reflec-
tion of the complexity of the environment in which we find
ourselves” (p. 53).

This suggestion, we submit, could very well apply to
systematicity as well. Because of the systematic features
of the environment, a very general connectionist architec-
ture under a very unrestricted training regime can develop
systematicity. The world does not consist of an arbitrary
set of unrelated events, and the representational resources
that cognitive systems are endowed with might be suffi-
ciently equipped to be able to pick up this ‘worldly degree’
of systematicity under an appropriately wide variety of cir-
cumstances. Contrary to the demand that systematicity
should follow necessarily from the architecture, that is,
that the representational system in itself should be intrin-
sically systematic, the suggestion we present here is that
the displayed systematicity derives from the interaction be-
tween the architecture and its environment. It may well be
that the systematicity of human cognition depends more
on only ‘weakly’ representational resources combined with
a largely systematic world, than on the cognizers having
somehow a built-in intrinsically systematic representa-
tional system. A representational system capable of reflect-
ing the systematicity in the environment could suffice for
displaying a psychologically plausible degree of
systematicity.

This idea of combining internal and external constraints
to model or generate specific behavioral and cognitive phe-
nomena is of course not new. Bechtel and Abrahamsen
(1991) follow (among others) Rumelhart, Smolensky, McC-
lelland, and Hinton (1986) in suggesting that ‘‘networks
may develop the capacity to interpret and produce sym-
bols that are external to the network. . . In the externalist
approach to symbol processing the focus is turned from
symbols in their mental roles to symbols in their external
roles” (Bechtel & Abrahamsen, 1991, pp. 248–249). This

use of external structures could, they argue, provide a con-
nectionist means of obtaining systematicity. From the late
1980s and early 1990s onwards, the idea that cognition is
embedded in the world has gained support (e.g., Brooks,
1991; Chiel & Beer, 1997; Clancey, 1997; Clark, 1997; The-
len & Smith, 1994, to name but a few). From this perspec-
tive, cognitive phenomena should be modeled not on a
purely internalist basis, but explicitly taking external fac-
tors into account, among which the systematicity found
in the world.

Our hypothesis that it is the structure inherent in the
world that allows a connectionist model to display syste-
maticity is not arbitrary, but rather well-motivated. In con-
tinuation of Butler’s (1993) and Aizawa’s (1997b, 2002)
analogy with planetary motion, invoking features of the
environment to explain systematicity is comparable to
explaining the earth’s trajectory by positing the existence
of the sun. This does add an extra hypothesis to the laws
of astronomy, but an explanatory relevant and empirically
justified one.

6.3. Degree of systematicity

It is difficult to judge whether the model displays the
same degree of systematicity as does the human cognitive
system. Even if it could somehow be established how sys-
tematic people are, it is unclear how this might be com-
pared to the model’s performance. After all, the model
learns a very simple language and receives minimal infor-
mation about a tiny world, whereas people have a full-
blown language and rich knowledge of a highly complex
world. Therefore, we would not expect the model to reach
the same levels of systematicity as people do.

Nevertheless, to uphold our claim that connectionist
systematicity is possible, certain aspects of semantic syste-
maticity that can be observed in people, should also be
available to the model. We have already demonstrated that
the model comprehends the occurrence of synonyms in
new contexts, as well as new combinations of phrases,
even if these refer to new complex events. Moreover, we
found the model to be able to deal with new combinations
of concepts (to be more precise, of people and toys), which
is remarkable considering that the model’s representations
hold no meaningful content at a more fine-grained level
than the basic event.

These four degrees of systematicity, corresponding to
the four groups of test sentences, seem easily manageable
by people as well. Despite these successes, however, it may
be argued that the model’s level of systematicity does not
suffice. This raises the question which level of generaliza-
tion a network needs to reach in order to be considered
‘systematic enough’. Since a network’s degree of systema-
ticity corresponds to the level of input novelty it can toler-
ate (Hadley, 1994a), the question becomes how strongly
the test sentences need to differ from the training
examples.

Frank and Čerňanský (2008) argue that, at the very
least, one or more specific groups of sentences should be
excluded from the training set, as was the case in our sim-
ulations. This prevents the distribution of the training sam-
ple from accurately reflecting the true distribution, making
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it impossible for the network to correctly process the with-
held sentences by simple interpolation from the training
examples. Instead, the network needs to have learned
about the system that generated the training and test sen-
tences. In the connectionist sentence comprehension mod-
els by Desai (2007), Miikkulainen and Dyer (1991), and
St.John and McClelland (1990), test sentences are unlikely
to differ strongly from training examples because each
sentence is randomly assigned to either the training or
the test set. As a result, the generalization displayed by
these models does not indicate any systematicity.

Other authors have came up with stricter definitions of
sufficient systematicity. Below, we discuss how two of
these relate to our model.

6.3.1. Words in novel grammatical roles
According to Hadley (1994a), a neural network exhibits

so-called ‘strong systematicity’ in sentence processing if it
handles test sentences with words in ‘‘syntactic positions”
(p. 249) they did not occupy during training. In practice,
this means that the grammatical subjects of training sen-
tences are objects in the test sentences (and vice versa).7

Hadley (1994a) argues that people display strong systema-
ticity, unlike the connectionist models proposed by Chal-
mers (1993), Elman (1990), Pollack (1990), and St.John and
McClelland (1990).

If our model is to be strongly systematic, it should
understand test sentences of the form p1 beats p2 without
being trained on any sentence containing the verb phrase
beats p2 or loses to p2.8 This is trivially achieved when p2 is
charlie or boy because, as we have shown in Section 5.1, syn-
onymous words have almost identical effects on the net-
work. Therefore, even if no training sentence contains
beats boy or loses to boy, the network can process these
phrases correctly if it was trained on beats charlie and loses
to charlie. As Hadley and Cardei (1999) remark, however,
restricting strong systematicity to words with a synonym
‘‘would certainly violate the spirit of the definition of strong
systematicity” (p. 218).

At first glance, it may seem unlikely that the network
can comprehend a test sentence with heidi or sophia in ob-
ject position if it has not been trained on any such sen-
tence. This is because there is no systematic relation
between verb phrases beats p and event vectors
lðloseðpÞÞ, nor between loses to p and lðwinðpÞÞ. Without
training exposure to a particular phrase–vector pair, that
phrase can therefore not be processed correctly. Neverthe-

less, the network might be able to exhibit strong systema-
ticity to some extent. Be reminded from Section 5.2 that
test sentences p1 loses to p2 are occasionally processed by
their systematic relation (in both form and meaning) to
training sentences p2 beats p1. In principle, this allows for
comprehension of p1 loses to p2 even if p2 never appeared
as object in training sentences.

We investigated the model’s potential for strong syste-
maticity by training ten networks again, but using an
adapted Sentence group: The training set contained no
sentence with charlie or boy in object position. After train-
ing, each network was tested on the four sentences heidi/
sophia loses to charlie/boy, all stating that win(charlie). The
results, presented in Table C7 of Appendix C, show that
the comprehension scores for win(charlie) are positive. This
is remarkable since all training sentences beginning with
heidi/sophia loses to (except those in which the object is
someone) describe events in which winðcharlieÞ is not the
case. Therefore, this result is indicative of strong
systematicity.

However, the comprehension scores for one of the
inconsistent events win(sophia) and win(heidi) is positive,
while it should be negative. The problem here is that the
microworld only has three people. Since charlie is never
mentioned as object, all training sentences of the form hei-
di loses to p describe events in which sophia wins (except
when p = someone), creating a strong association between
the phrase heidi loses to and the event win(sophia). Similarly,
the phrase sophia loses to becomes associated to win(heidi).
If the microworld held more than three people, many of
the training sentences sophia loses to p would not state that
heidi wins. As a result, the test sentence sophia loses to
charlie would not lead to a large comprehension score of
win(heidi). Nevertheless, even with our three-person micro-
world, we found promising signs of strong systematicity, in
that win(charlie) correctly received a positive comprehen-
sion score.

6.3.2. Generalizing outside the training space
Marcus (1998a, 1998b, 2001) argues that neural net-

works cannot generalize to items that lie ‘outside the train-
ing space’, meaning that they contain input values that
were not present in any training example. A well-known
example is the following: A SRN is trained to predict the
next word at each point of sentences like A rose is a rose
and A lily is a lily. After training, it is tested with the input
A blicket is a ____, where blicket is a novel word. People
invariably respond that the next word will be blicket, but
the SRN produces rose or lily (or something in between).
It is not difficult to see why this is so: The weight of the
connection from the input unit representing blicket has
never been updated, because the word never occurred dur-
ing training. When the new word does finally occur, the
network’s best guess is to predict rose or lily again, as it
learned to do after the words is a.

Our network, too, would not be able to understand sen-
tences containing a word that did not occur during train-
ing. When given the test sentence heidi plays with blicket,
it could not construct a situation vector representing
play(heidi, blicket). Importantly, however, people will also
have difficulties imagining heidi playing with a blicket if that

7 As an additional requirement for strong systematicity, sentences
should have embedded clauses containing words in new syntactic
positions. Since our microlanguage’s sentences do not have embedded
clauses, we shall not discuss this requirement.

8 Note that, in our microlanguage, strong systematicity is only relevant to
sentences of the form p1 beats p2 and p1 loses to p2, that is, the Sentence
group. This is because ‘sentences’ like toy plays with girl and boy is played by
game are meaningless and, therefore, do not need to be generalized to.
Incidentally, this observation raises doubts about the validity of unre-
stricted assertions concerning systematicity, such as Fodor and McLaugh-
lin’s (1990) claim that ‘‘it is a law of nature that you can’t think aRb if you
can’t think bRa” (p. 203).
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concept is completely new to them. The model’s failure to
represent play(heidi, blicket) is appropriate considering that
it takes mental simulation, and not the construction of a
predicate-argument structure, as the cognitive process
relevant to sentence comprehension. Moreover, general-
ization outside the training space does seem possible for
neural networks trained on next word prediction: Altmann
(2002) shows that SRNs can generalize to novel input
items if they have enough prior exposure to sequential
structure.

6.4. Scalability

The extent to which our model scales up remains to be
investigated. However, it is important to note that the is-
sue of scalability is orthogonal to that of systematicity. Fo-
dor and Pylyshyn (1988) did not argue that only small-
scale connectionist models can display systematicity, and
none of their arguments against connectionist systematic-
ity are restricted to large-scale models. So, even if our mod-
el turns out to suffer from scalability problems, it still
challenges Fodor and Pylyshyn’s claims.

Having said that, we do recognize that scalability is nec-
essary for any model, connectionist or symbolic, to be cog-
nitively plausible (i.e., functional in a realistic world).
When applying connectionist models to domains of real-
world size and complexity, two problems of scalability
can arise: First, the size of networks required to implement
the modeled capability may grow out of bounds (Parberry,
1994). Second, the time required for the network to learn
the required connection weights may become unrealisti-
cally long (Judd, 1990).

Let us first consider the network’s size, which depends
in large part on the size of its output layer. This, in turn, de-
pends on the size of the microworld. One concern may be
that a 150 units output layer does not suffice to represent
larger worlds because the number of required units grows
with world size. Although this intuition is likely to be cor-
rect, one should keep in mind that what matters for the
size of the vector representations is not so much the size
of the world but rather the number of independent events
in the world. As the world gets larger, there will be more
dependencies among events, so the number of necessary
situation space dimensions may grow slower than the
number of basic events. This expectation is consistent with
the finding that our situation space had the same number
of dimensions as Frank et al.’s (2003), even though their
microworld was much simpler (having only 14 basic
events). Moreover, our belief values estimated the micro-
world’s co-occurrence probabilities more accurately than
did theirs (compare our Fig. A5 to their Fig. 3).

As for the scalability of network training, it is hard to
predict how learning time will increase for larger and more
complex worlds and languages. It is known that backprop-
agation learning in general is NP-hard9 (Šíma, 1996), which
may encourage pessimism about the scalability of the learn-

ing algorithm. However, the intractability of general back-
propagation learning does not mean that scalability is
impossible for backpropagation in general. The NP-hardness
result merely means that not all backpropagation learning is
efficient. Whether or not our network’s weights can be effi-
ciently trained – by backpropagation or otherwise — is an
open question.

Whereas network size and learning time are the impor-
tant scaling factors for connectionist models, inferential
time is the bottleneck in symbolic models. In analogical
models (such as ours), inference is direct, but in symbolic
models, the time required to unpack and compute the
implications of representational changes can easily be-
come prohibitive for larger domains (Ford & Pylyshyn,
1996; Haselager, 1997; Pylyshyn, 1987). In practice, almost
all cognitive models of sufficient power and generality are
plagued by computational intractability (Bylander, 1994;
Cook, 1971; Cooper, 1990; Levesque, 1988; Roth, 1996;
van Rooij & Wareham, 2008). This, to us, signals that
intractability cannot at present be used as an argument
for one modeling framework or another (see also van Rooij,
2008). Be that as it may, the scalability of our account of
systematicity does need to be established. In this paper
we demonstrated the in principle possibility of connection-
ist semantic systematicity. We hope that future research
may establish its practical feasibility as well.

7. Conclusion

We have presented a connectionist model of sentence
comprehension that displays a considerable degree of
systematicity. The model simulates sentence comprehen-
sion as the transformation of a sentence into an analog-
ical vector representation of a described situation in a
microworld. Importantly, the model is purely connec-
tionist: In contrast to several previous connectionist at-
tempts to model systematicity, it does not implement a
symbol system. Also, our simulations are more than just
a demonstration of connectionist systematicity, because
we did not resort to ad hoc or arbitrary assumptions to
bring about the observed systematicity. Instead, the
systematicity is developed robustly because it derives
from the structure that is present in the world as well
as the language used to described that world.

The origin of systematicity should be sought in the cog-
nitive system’s embeddedness in the world rather than in
inherent properties of the system itself. By doing so, our
simulations provide evidence against Fodor and Pylyshyn’s
(1988) claim that connectionism cannot explain
systematicity.
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Appendix A. Competitive Layer training

Each Competitive Layer unit i is associated to a weight
vector li 2 ½0;1�

44 and a single bias value bi. Initially, all
weights are .5 and all biases are 1. Element SkðaÞ of micro-
world observation vector Sk 2 f0;1g44 has a value of 1 if ba-
sic event a occurs at instant k, and 0 otherwise. During
each of 20 training epochs, the following is repeated for
all observations Sk:

1. For every unit i, determine the cityblock distance
between i’s weight vector and the current observation:
dðli; SkÞ ¼

P
ajliðaÞ � SkðaÞj.

2. Determine the winner w, this is the unit with the short-
est biased distance to the input: w ¼ argminiðdðli; SkÞ�
biÞ.

3. Update the winner’s weight vector: Dlw ¼ aðSk � lwÞ,
with a the weight learning rate parameter.

4. Decrease the winner’s bias (to a minimum of 1):
Dbw ¼ bbwð1� bwÞ, with b the bias learning rate
parameter.

5. Increase the biases of all losers: Dbi ¼ bbi (for every
i–w).

Learning rates are initially set at a ¼ 1 and b ¼ 10�4.
After each of the first 10 training epochs, their values are
reduced linearly to end up at 10% of the initial values. Over
the last 10 epochs, they remain at these levels.

Fig. A5 shows the resulting similarity between individ-
ual estimated probabilities (from Eqs. (1) and (2)) and cor-
responding probabilities in the microworld. For basic
events, the two are virtually identical ðr ¼ 1Þ. For conjunc-
tions and conditional probabilities, the correlation is very
strong (r ¼ :997 and r ¼ :996, respectively) and there are
no extreme outliers. These results indicate that the vectors
l indeed encode the regularities in the microworld and
form the desired representations of basic events.

Appendix B. Processing Sentence group test sentences

As explained in Section 5.2, there are two ways by
which the network can comprehend test sentences from
the Sentence group: the ‘conjunction route’ and the ‘inver-
sion route’. We can find out to what extent one of the
routes is preferred by looking at the network’s output. If

the output resulting from the test sentence p1 beats p2 is
very similar to the result of the training sentence p2 loses
to p1, then the network seems to have interpreted p1 beats
p2 by analogy with p2 loses to p1, that is, it took the inver-
sion route. On the other hand, if the network’s output is
very much like the conjunction of the outputs resulting
from p1 beats someone and someone beats p2, then it took
the conjunction route.

The ‘conjunction preference’ is a measure for the extent
to which a particular sentence is processed more by the
conjunction route than by the inversion route. When pro-
cessing the test sentence p1 beats p2, the conjunction pref-
erence is computed as follows: The network processes the
sentence and the resulting comprehension scores of all 44
basic events are computed. Let~ctest denote the 44-element
vector containing these comprehension scores. Likewise,
~cinv contains comprehension scores resulting from process-
ing the training sentence p2 loses to p1, and ~ccon are the
comprehension scores in the conjunction (Eq. (4)) of the
outputs resulting from training sentences p1 beats someone
and someone beats p2. If the network would process train-
ing sentences to perfection, ~cinv ¼~ccon because the first
training sentence describes the same event as the conjunc-
tion of the latter two. In practice, however, the two vectors
will be unequal.

If test sentence p1 beats p2 is processed through the con-
junction route, ~ctest will equal ~ccon. If the test sentence is
processed through the inversion route, ~ctest ¼~cinv. Which
of the two routes is preferred is measured by comparing
the correlation between ~ctest and ~ccon (denoted rcon;test) to
the correlation between ~ctest and ~cinv (denoted rinv;test).
The average values for rcon;test and rinv;test were .94 and
.90, respectively, with minima of .72 and .63. Such high
values were to be expected considering that the network
simulates comprehension of both training and test sen-
tences very well (in case of perfect comprehension, all cor-
relations would be 1).

Formally, the extent to which the conjunction route is
preferred over the inversion route is defined as

Conjunction preference ¼ rcon;test � rinv;test

2� rcon;test � rinv;test
:

The conjunction preference is positive if rcon;test > rinv;test

and negative in the opposite case. In the marginal cases,
where rcon;test ¼ 1 or rinv;test ¼ 1, the conjunction preference
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Fig. A5. Scatter plot of actual ðPrÞ against estimated ðsÞ probabilities. Basic events are indicated by a, while b denotes basic events or negations thereof. Left:
prior probabilities of (negations of) basic events. Middle: prior probabilities of conjunctions of (negations of) basic events. Right: conditional probabilities of
basic events.
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is +1 or �1, respectively. If rcon;test ¼ rinv;test, no one route is
preferred over the other, so conjunction preference equals
0.

The histogram in Fig. B6, plotting data from all Sentence
Group test sentences and all trained networks, shows a
clear preference for the conjunction route. However, the
conjunction preference is sometimes negative, indicating
that the inversion route was taken.

Appendix C. Strong systematicity results

Table C7 shows the results of investigating the model’s
ability to display strong systematicity. See Section 6.3 for
details.
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Table C7
Comprehension scores after processing test sentences for investigating
strong systematicity.

Test sentence Comprehension score of

win(charlie) win(heidi) win(sophia)

heidi loses to charlie/boy .39 �.87 .36
sophia loses to charlie/boy .28 .48 �.90
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