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Abstract 

Statistical learning (SL) is increasingly invoked as a set of 
general-purpose mechanisms upon which language learning is 
built during infancy and childhood. Here we investigated the 
extent to which SL is related to adult language processing. In 
particular, we asked whether SL proclivities towards relations 
that are more informative of English are related to efficiency in 
reading English sentences by native speakers of Korean. We 
found that individuals with a stronger statistical learning 
sensitivity showed a larger effect of conditional word 
probability on word reading times, indicating that they more 
efficiently incorporated statistical regularities of the language 
during reading. In contrast, L2 English proficiency was related 
to overall reading speed but not to the use of statistical 
regularities. 
Keywords: statistical learning; sequential learning; reading; 
sentence processing; bilingualism. 

Introduction 
Human languages are learnt and processed in real time. 
Speech is the ultimate fleeting experience, as it dissipates as 
soon as it is produced. And while printed text is more 
stationary, proficient readers process words sequentially at a 
very fast pace, with relatively few gazes spent looking back 
to reread previous words. The inherent fleeting nature of 
language and the great efficiency that humans exhibit in 
learning and using languages suggest that the brain recruits 
mechanisms employed for processing sequential information. 
These mechanisms may involve the ability to unconsciously 
track and extract patterns of regularities across sensory 
modalities, and to abstract over these patterns (for reviews 
see Gomez & Gerken, 2000; Perruchet & Pacton, 2006). 

Because of the probabilistic sequential nature of language 
processing, recent research has attempted to establish links 
between mechanisms for language learning and processing 
and of so-called statistical learning (SL), by relating 
individual variance in SL tasks with individual variance in 
tasks of language learning. The rationale of such approaches 
is to show that some measure of statistical learning ability, as 
assessed in tasks requiring implicitly learning relations 

among probabilistic sequences, is correlated with 
performance on one or more tasks involving language. 
Languages exhibit statistical properties at different levels of 
analysis, which make them potentially learnable from 
experience. In the early stages of language development 
infants and toddlers take in a considerable amount of this 
statistical structure. Infants exhibit individual differences in 
statistical learning skills that may modulate language 
development trajectories (e.g., Arciuli, & von Koss 
Torkildsen, 2012; Benasich et al., 2006; Kidd, 2012). 

Here we take a similar approach in seeking evidence for a 
relation between statistical learning and second-language 
reading in adults. Arguably statistical language learning does 
not stop in the early years of childhood. Studies with older 
children have also linked poor implicit statistical skills with 
language and/or reading difficulties (Evans, Saffran, & Robe-
Torres, 2009; Yim & Windsor, 2010) and adult native 
speakers are even sensitive to the particular statistical 
distribution of sentence structures within an experimental 
session, and adapt their processing preference accordingly 
(Fine, Jaeger, Farmer, & Quin, 2013). Thus, sensitivity to the 
statistical structure of language is likely to support not only 
children learning a language, but also adults using it daily. 
Indeed, direct predictive relations between statistical learning 
scores and online sentence processing and other linguistic 
tasks exist now both for children and adults (Yim & Windsor, 
2010). In addition, neurophysiological data suggest that 
similar neural mechanisms appear to serve both syntactic 
processing of language and statistical learning of sequential 
patterns (Abla, Katahira, & Okanoya, 2008; Christiansen, 
Conway, & Onnis, 2012). Tracking implicit sequential 
regularities in linguistic and nonlinguistic stimuli seems to be 
independent of factors other than language performance, such 
as age, nonverbal IQ, and memory (Yim & Rudoy, 2010; 
Kaufman et al., 2010).  

Here we are interested in capturing individual differences 
in statistical learning, language proficiency, and language 
comprehension, and we aim to correlate the three. Adult non-
native speakers of English who show a stronger “English-



 

 

like” statistical learning bias in an artificial grammar task 
which is specifically designed as a litmus test to gauge the 
strength of preexisting experience with statistical regularities 
of English, are expected to be more sensitive to the statistics 
of English in an online reading task. Our study aims to 
achieve the following goals: 1) further support the view that 
statistical learning skills underlie not only language learning 
in childhood, but also language processing in adults; and 2) 
contrast the processing effect of individual differences in 
statistical learning vs. second-language (L2) proficiency on 
language reading. 

Language-specific statistical learning 
To measure individual statistical learning in second language 
speakers we used a task devised by Onnis & Thiessen (2013). 
The rationale for the task is to capture potential proclivities 
towards language-specific statistical relations. Natural 
languages differ in the statistical regularities available to 
learners. One such difference relates to the predominant 
directionality of conditional relations among words. For 
example, while “the” does not strongly predict “dog” 
(because many words can follow “the”), “dog” more strongly 
retrodicts “the.” Learners are sensitive to informative 
relations in both directions (Jones & Pashler, 2007): both 
infants and adults are able to segment fluent speech into 
words on the basis of either forward-going relations among 
syllables, or backward-going relations (Pelucchi, Hay, & 
Saffran, 2009; Perruchet & Desaulty, 2008). The 
predominant directionality of relations among elements of 
the input differs between natural languages. One example of 
this is described in linguistic terms as the “headedness” of a 
language. The head of a phrase is the word that defines the 
syntactic function of the phrase (e.g., the verb in a verb 
phrase). Some languages (such as English) are classified 
linguistically as head-initial, meaning that the head of the 
phrase tends to occur before complement items (e.g., “going” 
in “going home”), while other languages are head-final and 
show the opposite word-order tendency. English for example 
arranges prepositional phrases like “to school” such that the 
head “to” precedes the noun “school”, while other languages 
favor postpositional organization (as in Korean 학교-
에 hakkjo-e ‘school to’). An intuitive prediction derived from 
the linear organization of the input is that English word 
clusters are more syntactically cohesive in a backward-going 
direction.  For example, in a phrase like “to school,” “to” 
does not strongly predict any word – because many nouns can 
follow “to” – but “school” more strongly retrodicts “to” 
because there is a relatively smaller set of words that can 
precede “school.” As these examples demonstrate, learners of 
different languages may experience different degrees of 
forward-going and backward-going cohesiveness. To assess 
this possibility, Onnis and Thiessen (2013) performed a 
corpus analysis of English (a predominantly head-initial and 
prepositional language) and Korean (a predominantly head-
final and postpositional language). The results indicated that 
in English, high backward transitional probabilities and low 
forward transitional probabilities were a better indicator of 

phrase cohesiveness than high forward transitional and low 
backward probabilities; in Korean, the opposite pattern held 
true. Thus, language-specific information latent in the linear 
order of words partially predicts phrase structure in language. 

Differences in statistical patterns between languages may, 
in turn, alter statistical learning itself. Sensitivity to back-
ward-going regularities may be more adaptive for learners in 
an English environment than for learners in a Korean 
environment. Consistent with this hypothesis, Onnis and 
Thiessen (2013) found differences between English and 
Korean speakers when they were exposed to an auditory 
artificial grammar with conflicting forward and backward 
transitional probabilities, as in the training sample in a): 
  
a) Training sample: .. fushezirafunizitifugezibu .. 
 
Crucially, the artificial grammar was such that whenever 
forward transitional probability (fwd-TP) was low between 
any two adjacent syllables, backward transitional probability 
(back-TP) was high (e.g., fwd-TP(zi|she) = .33) and 
back-TP(she|zi) = 1), and vice versa (e.g., fwd-TP(ra|zi) = 1 
and back-TP(zi|ra) = .33). 

Two parses of sample a) into bisyllabic units are equally 
possible. One parse segments the signal such that the two 
syllables of a word have a high forward probability and a low 
backward probability (the HiLo pattern), while in the other 
parse the word-internal forward probabilities are low and the 
backward probabilities are high (the LoHi pattern). 
 
b) Possible Parse I (HiLo): ..fushe zira funi ziti fuge zibu .. 
c) Possible Parse II (LoHi):  .. shezi rafu nizi tifu gezi .. 

 
At test, two word groupings corresponding to the HiLo and 

LoHi patterns were pitted against each other in a two-
alternative forced-choice task. A participant’s statistical 
learning bias was defined as the proportion of LoHi choices 
over the sum of test trials presented to them. While both 
language groups had experienced the same grammar, native 
English speakers predominantly grouped syllables on the 
basis of high backward probabilities (as in example c above), 
while native Korean speakers preferred a grouping on the 
basis of high forward probabilities (as in example b). By 
contrast, with either visual or tonal non-linguistic stimuli, 
English and Korean speakers performed equivalently. The 
fact that the difference in performance between English and 
Korean speakers is limited to linguistic input, and consistent 
with the predominant directionality of their native language, 
suggests that the difference is due to linguistic experience.  

Thus, the findings of Onnis & Thiessen (2013) suggest that 
SL can adapt to the statistical structure of linguistic input in 
ways that lead learners to have different expectations about 
novel subsequent input. To further support this claim, we 
wanted to find out whether individuals’ degree of SL bias is 
correlated with statistical sensitivity to natural language in an 
online language comprehension task. 



 

 

Statistical learning and language processing 
Statistical patterns play an important role in language 
learning. Language processing, too, has been shown to 
depend on statistical information. Because of the time-
dependent and sequential nature of both speech and reading, 
language comprehension is an inherently sequential process 
that probabilistically anticipates upcoming material. Hence, 
the cognitive processing effort for a piece of language (e.g., 
a word) should depend on its occurrence probability. At its 
most fundamental, a word’s occurrence probability is simply 
its frequency in the language. Indeed, this frequency predicts 
the time required to recognize the word. When the word 
forms part of a sentence or text, reading time on the word is 
logarithmically related to its occurrence probability given the 
preceding context (Smith & Levy, 2013). 

Estimating occurrence probabilities of words in context 
requires a probabilistic language model that implements 
knowledge about the language’s statistics. Possibly the 
simplest language model is the bigram model, which assumes 
that a word’s probability depends only on its overall 
frequency and on the immediately preceding word. Hence, 
word probabilities under such a model equal forward 
transitional probabilities, which have been found to predict 
reading times (McDonald & Shillcock, 2003). More 
sophisticated models can capture language statistics more 
accurately, resulting in more accurate reading time 
predictions (e.g., Frank & Bod, 2011). For the current study, 
however, we limit ourselves to a bigram model because the 
SL bias in our artificial grammar learning study is defined in 
terms of transitional probabilities. 

Method 
Participants. Fifty-seven adult native speakers of Korean 
(45 women; age M = 22.6, SD = 2.7) were recruited at four 
universities in Seoul (Konkuk University, Ewha Womans 
University, Sogang University, and Seoul National 
University). To qualify for the study their TOEFL score of 
English as a Second Language score should be over 600 (old 
version), and they should have spent at least three years in 
English-speaking country or environment. They participated 
in a statistical learning task, a sentence reading task, and an 
English proficiency self-assessment task (in this order). They 
were tested individually in a quiet room at their own 
university and were paid 10,000 Korean Won for their 
participation. 

Statistical Learning Task 
Materials. For the artificial grammar, the same materials as 
Onnis & Thiessen’s (2013) Experiment 1 were used. The 
grammar lexicon was composed of eight monosyllabic words 
(fu, zi, shae, ni, ge, ra, ti, bu). To generate the training 
materials these words were arranged in a seamless sequence 
according to the rules of a stochastic Markovian grammar 
chain. The process started by choosing one of the eight 
possible words at random, and then generating the next word 
according to two probabilistic sequence constraints: 

whenever the forward probability between any two adjacent 
words was low (fwd-TP = .33), the backward probability was 
high (back-TP = 1), and vice versa. A sample of this template 
sequence is “ …fu shae zi ra fu ni zi bu fu ge zi ra fu ni zi bu 
fu ge zi ti fu shae zi …”. Frequencies of individual words, 
bigrams (two-word sequences), and their associated 
transition probabilities are summarized in Table 1. 
 
Table 1: Summary of statistical relations among adjacent 
words in the grammar used in the the statistical learning task. 
Fwd-TP and Back-TP indicate forward and backward 
transitional probabilities among words in each bigram. Freq1 
and Freq2 indicate frequency of occurrence of first and 
second word in each bigram, while Freq Bigram indicates 
how often each bigram occurred during training. 

Bigra
m 

Typ
e 

Fwd
-TP  

Back
-TP 

Freq
1 

Freq
2 

Freq 
Bigra
m 

fu shae LoHi 0.36 1.00 133 48 48 
fu  ni LoHi 0.32 1.00 133 42 42 
fu  ge LoHi 0.32 1.02 133 42 43 
zi  ra LoHi 0.35 1.00 132 46 46 
zi  ti LoHi 0.31 1.00 132 41 41 
zi  bu LoHi 0.34 1.00 132 45 45 
shae zi HiLo 1.00 0.36 48 132 48 
ni  zi HiLo 1.00 0.32 42 132 42 
ge  zi HiLo 1.00 0.32 42 132 42 
ra  fu HiLo 1.00 0.35 46 133 46 
ti  fu HiLo 1.00 0.31 41 133 41 
bu  fu HiLo 1.00 0.34 45 133 45 

 
The actual sequence was realized using the speech 
synthesizer MBROLA, and concatenating the eight words to 
form a pauseless 3.5 minute speech stream of 711 words, with 
80 ms for consonants and 260 ms for vowels. Because we 
were interested in the perception of grouping boundaries as 
driven by statistical biases alone, MBROLA did not use any 
prosodic or temporal cues to grouping boundaries. In 
addition, the sequence faded in and out for 5 s, giving the 
impression of an unbounded stream. The Italian diphone set 
in MBROLA was chosen to make the words dissimilar 
enough to Korean, but still clearly perceivable, and to engage 
participants in an “alien language” learning task. Finally, we 
ensured that all syllable sequences were phonotactically legal 
in Korean. 

To verify whether participants preferred a specific pattern 
of transitional probabilities after exposure to the training 
phase, at test two types of bigrams were pitted one against the 
other in a forced-choice task, corresponding to a pattern of 
high fwd-TP and low back-TP (dubbed “HiLo” bigrams) 
versus the opposite “LoHi” bigrams. For example, the LoHi 
bigram ‘fu shae’ was presented against the HiLo bigram ‘shae 
zi’. Six test pair trials were presented in random order, while 
the order within a pair was counterbalanced by repeating each 
test pair twice, for a total of 12 test trials. Note that HiLo and 
LoHi bigrams were composed of the same pseudowords and 
had been presented with an equal frequency at training. 
Hence, the only statistics useful to systematically choose one 



 

 

type over the other would have to be a preference for the 
patterns of transition probabilities giving rise to the bigrams. 
Procedure. Participants first listened to the training stream 
for 3.5 min, after which they were presented with the forced-
choice task between pairs of LoHi and HiLo bigrams. For 
each pair they were asked to choose which sequence formed 
a grouping in the novel language they had just heard. We 
coded 1 for responses consistent with the English bias 
(preference for LoHi bigrams), and 0 for responses consistent 
with head-final languages such as Korean (namely, HiLo 
bigrams). We then defined a participant’s statistical learning 
bias as the proportion of LoHi choices over the 12 test trials 
presented. The strength of the learning bias, computed as 
(learning bias – 0.5)2, quantifies bias extremeness towards 
either LoHi or HiLo preference. 

Sentence Reading Task 
Materials. Sentences came from the 361-sentence UCL 
corpus (Frank, Monsalve, Thompson, & Vigliocco, 2013) 
explicitly created to evaluate language models on word-
reading times. These sentences were drawn from original 
English narratives. Each participant was randomly assigned 
to one of ten groups, each containing 36 unique test sentences 
in English from the University College London UCL corpus, 
and five practice sentences. Test sentences were presented in 
random order. The words were displayed one at a time, 
progressing across the screen in their natural position with 
successive presses of the spacebar. Approximately half of the 
sentences were followed by a yes-no question regarding the 
content of what was just read in order to maintain the 
attention of the participants. 

Proficiency assessment task 
Participants self-assessed their proficiency in English 
listening, speaking, reading, and writing, as well as their 
accent, on a 7-point scale. All Pearson correlation 
coefficients between each pair of ratings was significantly 
positive (all p < .0005), and thus we took the average rating 
for each participant as a single measure of second language 
proficiency. 

Results 
A more efficient reader should adapt her reading times to the 
words’ log-transformed occurrence probability, such that 
more probable words are read more quickly (Levy, 2008; 
Smith & Levy, 2008). Hence, we take the extent to which 
higher log-transformed forward transitional probability (as 
opposed to base word frequency) predicts shorter reading 
time as indicative of a reader’s efficiency. 

Naturally, we expect participants with higher English 
proficiency to read faster. In addition, they may also read 
more efficiently, in the sense that they display a more 
negative effect of forward probability on reading time.  
Alternative, non-exclusive possibilities are that participants 
read English faster and/or more efficiently if they have a 
more English-like (i.e., larger) learning bias or a stronger 
(i.e., more extreme) learning bias. We further expect any 

effects of English proficiency and learning bias to be 
independent from each other, although proficiency and 
learning bias may themselves be correlated. 
Learning bias and proficiency. The mean statistical 
learning bias (towards the English-like LoHi patterns), 
learning bias strength (towards either pattern), and L2 
proficiency score were, respectively, 0.575 (SD = 0.197), 
0.044 (SD = 0.051), and 5.144 (SD = 0.721). Proficiency was 
not significantly correlated with learning bias (r = .08; p > .5) 
nor with strength of learning bias (r = −.10; p > .4). We note 
that the mean SL bias preference is closer to the English-
expected pattern than what Onnis & Thiessen (2012; OT 
dataset) found. A comparison of the data distributions in the 
two dataset indeed suggests a major difference, notably a 
bimodal distribution, with the two modes located at 0.4 and 
0.6, i.e. on each side of the chance level value of 0.5 in the 
current data. Conversely, the OT dataset had a single mode at 
0.3. The bimodal distribution in our data suggests that the 
absolute strength of learning bias may be a better measure 
reflecting sensitivity to SL. 
Data preprocessing. Data on a complete sentence was 
excluded if any RT on a word was extreme (below 80 ms or 
above 3000 ms). Furthermore, we did not include data on 
sentence-initial and sentence-final words, words followed by 
a comma, and clitics. This left a total number of 23,640 data 
points for analysis. 
Reading time analysis. To investigate how readers’ 
sensitivity to language statistics is related to their learning 
bias and English proficiency, the collected data were 
analyzed by linear mixed-effects regression. Subject-specific 
predictors (fixed effects) were: statistical learning bias 
(SLBIAS), strength of the bias (SLBIAS2), and English 
proficiency (PROFICIENCY). Item-specific predictors were: 
word position in the sentence (WORDPOS), number of letters 
of word (LENGTH), log-transformed word frequency 
(WORDFREQ), and the log-transformed forward transitional 
word probability (FORWPROB). Word frequency and forward 
transitional probability were computed from word and 
bigram counts in the written-text part of British National 
Corpus. Properties of the previous word (PREVLENGTH, 
PREVWORDFREQ, PREVFORWPROB) were also included to 
take into account potential spillover in the reading times.  
As trial-specific predictor, RT on the previous word 
(PREVRT) was included to factor out the auto-correlation 
between consecutive key presses (Baayen & Milin, 2010). In 
addition, the model included by-subject and by-item (i.e., 
word token) random intercepts and by-subject random slopes 
of all predictor variables except for the subject-specific ones. 
RTs were log-transformed and all independent variables were 
standardized. 

The first model that was fitted included the two-way 
interactions between each of the three subject-specific 
predictors and each of the six item-specific predictors 
(PREV)LENGTH,  (PREV)WORDFREQ, and (PREV)FORWPROB. 
Next, non-significant (|t| < 2) interactions were removed one 
at a time, starting with the least significant interaction. Table 
3 shows the resulting model’s fixed-effects coefficients with 



 

 

corresponding t- and p-values (p-values are obtained by 
treating t-values as z-scores, which is justified by the very 
large amount of data). 

 
Table 3: Regression model fitted to log-transformed RTs 

Variable Coeff. t-value p-value 
(intercept) 6.192 339.9  < .0001 
PREVRT 0.091 14.7  < .0001 
WORDPOS −0.015 −3.5  < .0005 
LENGTH 0.041 9.8  < .0001 
PREVLENGTH −0.006 −2.2  < .03 
WORDFREQ −0.006 −1.3  .2 
PREVWORDFREQ −0.013 −2.5  < .02 
FORWPROB −0.025 −6.7  < .0001 
PREVFORWPROB −0.013 −3.1  < .002 
PROFICIENCY −0.087 −4.0  < .0001 
SLBIAS 0.009 0.4  .7 
SLBIAS2 0.001 0.0  .9 
PROFICIENCY × LENGTH −0.021 −5.0  < .0001 
SLBIAS2 × FORWPROB −0.007 −2.8  < .005 

 
As expected, LENGTH is positively related to RT: Longer 
words take longer to read. In addition, there are reliable 
negative effects of PREVWORDFREQ and (PREV)FORWPROB 
on RT: words are read faster if they are more frequent or their 
occurrence is more likely given the previous word. 

The strong negative effect of PROFICIENCY means that 
participants who self-assessed their level of English as higher 
read more quickly, which validates the proficiency measure. 
L2 proficiency also modulates the effect of LENGTH in that 
less proficient participants (relative to more proficient ones) 
display increased difficulty with longer words. 

Crucially, statistical learning bias is not significantly 
related to RT nor does it play a role in any interaction effect. 
In contrast, the strength of learning bias modulates the effect 
of FORWPROB: The stronger the learning bias (i.e., higher 
SLBIAS2), the more sensitive reading becomes to forward 
probability (the effect of FORWPROB is more negative) 

Discussion 
In this study we investigated the association of individual 
differences in second-language processing with individual 
differences in a probabilistic sequence learning task and in 
second-language proficiency. The rationale is that if SL 
subserves language, and learning languages implies the 
discovery of language-specific distributional relations, then 
SL biases that match the statistical structure of a specific 
language increase efficiency when processing – here: reading 
– that language. 

Our study extends on recent literature relating SL and 
literacy development. Arciuli and Simpson (2012) found a 
correlation between a non-linguistic SL task and measures of 
reading abilities derived from standardized reading tests in 
both elementary school children and adult native speakers. In 
addition, Spencer, Kashak, Jones and Lonigan (2014) 
established correlations between SL measures and early skills 
related to literacy development, notably oral language 

abilities, vocabulary knowledge, and phonological 
processing. With respect to second language learning, Frost, 
Siegelman, Narkiss, and Afek (2013) provided evidence that 
SL predicts word decoding abilities in a second language. 

Our results further suggest that the ability to track 
statistical relations in sequenced patterns may not only be 
useful in learning a language early in life – the focus of 
previous research – but is also significantly correlated with 
the ability to process natural language as adults. In addition, 
the above studies established relations between SL and either 
broad measures of literacy outcomes, such as scores of 
standardized reading tests, or measures of single-word 
orthographic knowledge. The present study allowed a finer-
grained examination of the role of statistical learning in more 
naturalistic reading conditions. We examined how biases in 
statistical learning reflecting the optimization of language-
specific knowledge are related to second language 
proficiency and efficiency in real-time reading. We found 
that participants whose learning bias more closely matched 
the English-like head-first pattern were better able to use 
word predictability (operationalized as forward transitional 
probability) in real-time sentence processing. Concurrently, 
those participants showed a weaker effect of the words’ base 
frequency on RTs. This is consistent with our interpretation 
that having a more English-like SL bias makes one closer to 
an “ideal” expectation-based English-language processor, 
who is sensitive to the words’ conditional probabilities rather 
than base frequencies (which are already incorporated in the 
conditional probability measure). 

Although more proficient participants generally read 
faster, and particularly so on longer words, there was no 
interaction between L2 proficiency and word frequency or 
forward transitional probability, suggesting that –perhaps 
surprisingly– increased proficiency is not reflected in more 
accurate knowledge or use of English language statistics. 
Conversely, participants with more positive learning bias did 
not read more quickly. The absence of this main effect is hard 
to explain considering our claim that more positive learning 
bias correlates with more efficient reading, as one would 
expect more efficient readers (i.e., those who make more 
optimal use of language statistics) to be faster readers, too. 
Finally, our results show that L2 proficiency and statistical 
learning bias are independent factors: They did not correlate 
across participants nor did they significantly interact. 

Conclusion  
Finding correlations between artificial grammar learning 
proclivities and language processing abilities contributes to 
validating the statistical learning approach to language. 
Future work could help establish whether people who are 
more sensitive to statistical sequential information make 
better language learners, and ultimately language users. In 
addition, understanding exactly what type of statistical 
information is required to optimize language tasks such as 
reading would greatly expand our knowledge of the 
mechanisms required for language processing. This line of 
research is not only useful to inform theories of language in 



 

 

the brain, but has potential practical applications. For 
example, it may be possible to assist inefficient second-
language readers by helping them process statistical 
information more optimally. Furthermore, our statistical 
learning task could be used to predict delays in language 
development, in cases where direct assessment of language is 
difficult (toddlers, or multilinguals for which assessment of 
language delays is confounded with proficiency in a given 
language). 
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